Abstract

Experimental results from the emission of vapor sources are considered in designing correcting diaphragms to achieve a uniform thickness distribution during evaporation of thin films mounted on large-area substrate holders, in different geometric configurations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984).
  2. A. I. Usoskin, “Correcting diaphragms for improving the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 51, 471–474 (1984).
  3. Zh. P. Trofimova, V. M. Kholodov, T. I. Demidovich, Ya. V. Petlitskaya, “Analysis of the condensate distribution and selection of correction masks for obtaining uniform thickness optical coatings,” Sov. J. Opt. Technol. 54, 357–359 (1987).
  4. G. V. Panteleev, A. A. Zhuravlev, V. V. Morshakov, “Correcting mask for increasing the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 55, 547–548 (1988).
  5. C. Grezes-Besset, R. Richier, E. Pelletier, “Layer uniformity obtained by vacuum evaporation: application to Fabry–Perot filters,” Appl. Opt. 28, 2960–2964 (1989).
    [CrossRef] [PubMed]
  6. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1989).
  7. F. Villa, O. Pompa, “Emission pattern of real vapor sources in high vacuum: an overview,” Appl. Opt. 38, 695–703 (1999).
    [CrossRef]
  8. K. H. Behrndt, “Film-thickness and deposition-rate monitoring devices and techniques for producing thin films of uniform thickness,” Phys. Thin Films 3, 1–59 (1966).
  9. R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, New York, 1996).
  10. A. Perrin, J. P. Gailliard, “Planetary system for high uniformity deposited layers on large substrates,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 238–244 (1992).
    [CrossRef]
  11. L. Holland, Vacuum Deposition of Thin Films (Chapman & Hall, London, 1970).
  12. A. Musset, I. Stevenson, “Thickness distribution of evaporated films,” in Optical Thin Films and Applications, H. Herrmann, ed., Proc. SPIE1270, 287–291 (1990).
    [CrossRef]

1999 (1)

1989 (1)

1988 (1)

G. V. Panteleev, A. A. Zhuravlev, V. V. Morshakov, “Correcting mask for increasing the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 55, 547–548 (1988).

1987 (1)

Zh. P. Trofimova, V. M. Kholodov, T. I. Demidovich, Ya. V. Petlitskaya, “Analysis of the condensate distribution and selection of correction masks for obtaining uniform thickness optical coatings,” Sov. J. Opt. Technol. 54, 357–359 (1987).

1984 (1)

A. I. Usoskin, “Correcting diaphragms for improving the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 51, 471–474 (1984).

1966 (1)

K. H. Behrndt, “Film-thickness and deposition-rate monitoring devices and techniques for producing thin films of uniform thickness,” Phys. Thin Films 3, 1–59 (1966).

Behrndt, K. H.

K. H. Behrndt, “Film-thickness and deposition-rate monitoring devices and techniques for producing thin films of uniform thickness,” Phys. Thin Films 3, 1–59 (1966).

Demidovich, T. I.

Zh. P. Trofimova, V. M. Kholodov, T. I. Demidovich, Ya. V. Petlitskaya, “Analysis of the condensate distribution and selection of correction masks for obtaining uniform thickness optical coatings,” Sov. J. Opt. Technol. 54, 357–359 (1987).

Gailliard, J. P.

A. Perrin, J. P. Gailliard, “Planetary system for high uniformity deposited layers on large substrates,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 238–244 (1992).
[CrossRef]

Grezes-Besset, C.

Holland, L.

L. Holland, Vacuum Deposition of Thin Films (Chapman & Hall, London, 1970).

Kholodov, V. M.

Zh. P. Trofimova, V. M. Kholodov, T. I. Demidovich, Ya. V. Petlitskaya, “Analysis of the condensate distribution and selection of correction masks for obtaining uniform thickness optical coatings,” Sov. J. Opt. Technol. 54, 357–359 (1987).

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1989).

Morshakov, V. V.

G. V. Panteleev, A. A. Zhuravlev, V. V. Morshakov, “Correcting mask for increasing the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 55, 547–548 (1988).

Musset, A.

A. Musset, I. Stevenson, “Thickness distribution of evaporated films,” in Optical Thin Films and Applications, H. Herrmann, ed., Proc. SPIE1270, 287–291 (1990).
[CrossRef]

Panteleev, G. V.

G. V. Panteleev, A. A. Zhuravlev, V. V. Morshakov, “Correcting mask for increasing the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 55, 547–548 (1988).

Pelletier, E.

Perrin, A.

A. Perrin, J. P. Gailliard, “Planetary system for high uniformity deposited layers on large substrates,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 238–244 (1992).
[CrossRef]

Petlitskaya, Ya. V.

Zh. P. Trofimova, V. M. Kholodov, T. I. Demidovich, Ya. V. Petlitskaya, “Analysis of the condensate distribution and selection of correction masks for obtaining uniform thickness optical coatings,” Sov. J. Opt. Technol. 54, 357–359 (1987).

Pompa, O.

Pulker, H. K.

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984).

Richier, R.

Stevenson, I.

A. Musset, I. Stevenson, “Thickness distribution of evaporated films,” in Optical Thin Films and Applications, H. Herrmann, ed., Proc. SPIE1270, 287–291 (1990).
[CrossRef]

Trofimova, Zh. P.

Zh. P. Trofimova, V. M. Kholodov, T. I. Demidovich, Ya. V. Petlitskaya, “Analysis of the condensate distribution and selection of correction masks for obtaining uniform thickness optical coatings,” Sov. J. Opt. Technol. 54, 357–359 (1987).

Usoskin, A. I.

A. I. Usoskin, “Correcting diaphragms for improving the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 51, 471–474 (1984).

Villa, F.

Willey, R. R.

R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, New York, 1996).

Zhuravlev, A. A.

G. V. Panteleev, A. A. Zhuravlev, V. V. Morshakov, “Correcting mask for increasing the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 55, 547–548 (1988).

Appl. Opt. (2)

Phys. Thin Films (1)

K. H. Behrndt, “Film-thickness and deposition-rate monitoring devices and techniques for producing thin films of uniform thickness,” Phys. Thin Films 3, 1–59 (1966).

Sov. J. Opt. Technol. (3)

A. I. Usoskin, “Correcting diaphragms for improving the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 51, 471–474 (1984).

Zh. P. Trofimova, V. M. Kholodov, T. I. Demidovich, Ya. V. Petlitskaya, “Analysis of the condensate distribution and selection of correction masks for obtaining uniform thickness optical coatings,” Sov. J. Opt. Technol. 54, 357–359 (1987).

G. V. Panteleev, A. A. Zhuravlev, V. V. Morshakov, “Correcting mask for increasing the thickness uniformity of vacuum coatings,” Sov. J. Opt. Technol. 55, 547–548 (1988).

Other (6)

H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, New York, 1989).

R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, New York, 1996).

A. Perrin, J. P. Gailliard, “Planetary system for high uniformity deposited layers on large substrates,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 238–244 (1992).
[CrossRef]

L. Holland, Vacuum Deposition of Thin Films (Chapman & Hall, London, 1970).

A. Musset, I. Stevenson, “Thickness distribution of evaporated films,” in Optical Thin Films and Applications, H. Herrmann, ed., Proc. SPIE1270, 287–291 (1990).
[CrossRef]

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

General geometric configuration of a source–substrate system. The surfaces of source and substrate are represented by F(x, y, z) and S(x 1, y 1, z 1), respectively.

Fig. 2
Fig. 2

Plane horizontal disk substrate: h m , is the height where the projection mask is placed.

Fig. 3
Fig. 3

Thickness normalized distribution in directions x (solid curve) and y (dashed curve) of the flat disk. In this case h p = 32 cm.

Fig. 4
Fig. 4

Correcting (solid curve) and projection (dashed curve, h m = 20 cm) mask for a flat disk.

Fig. 5
Fig. 5

Vertical cylinder substrate of radius R and height h p .

Fig. 6
Fig. 6

Normalized thickness distribution on the curved wall of a vertical cylinder.

Fig. 7
Fig. 7

Correcting mask on surface.

Fig. 8
Fig. 8

Spherical dome-shaped substrate of radius r s .

Fig. 9
Fig. 9

Normalized thickness distribution along the radius in directions x (solid curve) and y (dashed curve). In this case normalization is relative to the maximum thickness in the x direction. The parameters of the dome are r s = 28, k = 4, h = 32 cm.

Fig. 10
Fig. 10

Correcting masks on the surface (solid curve) and projected on a plane with h m = 15 cm (dotted curve).

Fig. 11
Fig. 11

Truncated cone substrate.

Fig. 12
Fig. 12

Normalized thickness distribution along the radius in the x (solid curve) and the y (dashed curve) directions. The parameters of conical fixture are ρ0 = 5, h 1 = 5, h = 30, c 1 = 28 cm.

Fig. 13
Fig. 13

Correcting masks on the surface (solid curve) and projected on a plane with h m = 15 cm.

Fig. 14
Fig. 14

Horizontal cylinder substrate of radius r c (drum vacuum chamber).

Fig. 15
Fig. 15

Normalized thickness distribution along the circle y = 0 (dotted curve) and along a line x = 0 (solid curve) on the surface of the cylinder (r c = 22; length, 64; k = 28 cm).

Fig. 16
Fig. 16

Correcting mask on surface.

Fig. 17
Fig. 17

Geometric configuration with a double source and a plane rotating substrate disk.

Fig. 18
Fig. 18

Normalized thickness distributions for sources placed in the xy plane at points (x 0, 0) and (0, y 0); Case (a) x 0 = y 0 = 20 (solid curve); case (b) x 0 = y 0 = 10 cm (dashed curve).

Fig. 19
Fig. 19

Normalized thickness distribution for coevaporated materials with rates of deposition v 1 = 1 and v 2 = 5: Case (a) solid curve; case (b) dashed curve. Case (a) with v 1 = 1 and v 2 = 1 (dash–dot curve).

Fig. 20
Fig. 20

Correcting masks. Case (a) solid curve; case (b) dashed curve.

Fig. 21
Fig. 21

Efficiency as a function of radius for plane (solid curve), cone (dotted curve), and spherical (dash–dot curve) substrates.

Fig. 22
Fig. 22

Efficiency as a function of length for vertical (solid curve) and horizontal cylinders (dotted curve).

Fig. 23
Fig. 23

Experimental normalized thickness distribution in two perpendicular directions along the x axis (spheres) and y axis (triangles). Experimental normalized thickness distribution on the plane disk with the correcting mask (diamonds).

Fig. 24
Fig. 24

Correcting mask for a real source.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

t=j=0m ajtj,
tjr1=Px, yvjr, r1ur, r1Ax, y|r-r1|j+3dxdy,
t¯jr1ρ=02π tjr1ρ, ψdψ.
t¯jr1ρ=φρ+απ+α tjr1ρ, ψdψ=tj0,
xm=x1-xz1-zzm-z+x,
ym=y1-yz1-zzm-z+y.
zx, y=c1-x2a2-y2b21/2-h0,
Ax, y=1+c2x2/a4+y2/b41-x2/a2-y2/b21/2.
ux, y=z1-zx, y,
vx, y, ρ, ψ=1Δx, yx x-r cos ψa2+y y-r sin ψb2+zx, y+h0zx, y-z1c2,
Δx, y=x2a4+y2b4+zx, y+h0c41/2.
tjρ, ψ=-b-b-fyfyvjx, y, ρ, ψux, yAx, y|r-r1|j+3dxdy,
|r-r1|=x-ρ cos ψ2+y-ρ sin ψ2+zx, y-z121/2.
ux, y, ψ=cos ψR cos ψ-x+sin ψR sin ψ-y
vx, y, ψ, z1=1Δx, yx x-R cos ψa2+y y-R sin ψb2+zx, y+h0zx, y-z1c2.
|r-r1|=x-R cos ψ2+y-R sin ψ2+zx, y-z121/2.
ux, y, ρ, ψ=1rsρ cos ψρ cos ψ-x+ρ sin ψρ sin ψ-y+z1ρ-kz1ρ-zx, y.
ur, r1=ρ cos ψρ cos ψ-x+ρ sin ψρ sin ψ-y+q-pz1ρz1ρ-zx, yρ cos ψ2 + ρ sin ψ2+q-pz1ρ21/2,
z1ρ=h-ρ-ρ0tan θ.
ux, y, ψ=1rcrc cos ψrc cos ψ-x+z1ψ-kz1ψ-zx, y.
vx, y, y1, ψ=1Δx, yx x-rc cos ψa2+y y-y1b2+zx, y+h0zx, y-z1ψc2,
|r-r1|=x-rc cos ψ2+y-y12+zx, y-z1ψ21/2.
t=-379.47t0+1220t1-904.94t3.
tr=v1t1r+v2t2r,
η=1pi=0pφρ+απ+αr1ρi, ψdψ0π tjr1ρi, ψdψ,

Metrics