Abstract

Hafnium dioxide thin films were deposited by reactive electron-beam evaporation at six different substrate temperatures on fused-silica substrates. During the depositions, the scattering of light caused by the growth of defects in the films was recorded with in situ total internal reflection microscopy. After deposition the films were analyzed by angle-resolved scatterometery, spectrophotometric measurement of film reflectance and transmittance, atomic force microscopy, and x-ray diffraction. We explore the effects of film defect formation on film optical properties and film surface topography using these data.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Zukic, D. G. Torr, J. F. Spann, M. R. Torr, “Vacuum ultraviolet thin films. 1: Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3 HfO2, and SiO2 thin films,” Appl. Opt. 29, 4284–4292 (1990).
    [CrossRef] [PubMed]
  2. J. D. Traylor Kruschwitz, W. T. Pawlewicz, “Optical and durability properties of infrared transmitting thin films,” Appl. Opt. 36, 2157–2159 (1997).
    [CrossRef] [PubMed]
  3. D. Smith, P. Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18, 111–115 (1979).
    [CrossRef] [PubMed]
  4. F. Rainer, E. A. Hildum, D. Milam, “Database of average-power damage thresholds at 1064 nm,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., National Bureau of Standards Special Pub. 756 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.
  5. U. B. Schallenberg, N. Kaiser, “Damage-resistant thin-film plate polarizer,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2966, 243–249 (1997).
  6. J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
    [CrossRef]
  7. J. J. McNally, G. Z. Al-Jumaily, S. R. Wilson, J. R. McNeil, “Ion beam assisted deposition of optical thin films—recent results,” in Southwest Conference on Optics, 1985, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE540, 479–485 (1985).
  8. M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
    [CrossRef]
  9. P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
    [CrossRef]
  10. Z. Fan, Q. Zhao, H. Qiu, R. Fan, “Laser-induced damage in optical coatings and laser conditioning technology,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 469–474 (1998).
  11. S. M. Edlou, A. Smajkiewicz, G. A. Al-Jumaily, “Optical properties and environmental stability of oxide coatings deposited by reactive sputtering,” Appl. Opt. 32, 5601–5605 (1993).
    [CrossRef] [PubMed]
  12. B. J. Pond, R. A. Schmell, C. K. Carniglia, T. Raj, “Comparison of the optical properties of some high-index oxide films prepared by ion beam sputter deposition with those of electron beam evaporated films,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, D. Milam, A. H. Guenther, B. E. Newnam, eds., National Bureau of Standards Special Pub. 752 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.
  13. I. A. El-Shanshoury, V. A. Rudenko, I. A. Ibrahim, “Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides,” J. Am. Ceram. Soc. 53, 264–268 (1970).
    [CrossRef]
  14. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
    [CrossRef]
  15. A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
    [CrossRef] [PubMed]
  16. K. H. Gunther, “Microstructure of vapor-deposited optical coatings,” Appl. Opt. 23, 3806–3816 (1984).
    [CrossRef]
  17. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect hafnia,” Appl. Opt. 32, 5567–5574 (1993).
    [CrossRef] [PubMed]
  18. D. W. Reicher, K. C. Jungling, C. K. Carniglia, “Contamination of surfaces prior to optical coating by in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 154–165 (1993).
  19. B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide,” Phys. Met. Metallogr. (USSR) 28, 83–90 (1969).
  20. J. A. Thornton, “Structure-zone models of thin films,” in Modeling of Optical Thin Films, M. R. Jacobson, ed., Proc. SPIE821, 95–103 (1988).
    [CrossRef]
  21. R. B. Sargent, “Effects of surface diffusion on thin film morphology: a computer study,” in Modeling of Optical Thin Films II, M. R. Jacobson, ed., Proc. SPIE1324, 13–31 (1990).
    [CrossRef]
  22. D. Henderson, M. H. Brodsky, P. Chaudhari, “Simulation of structural anisotropy and void fraction in amorphous thin films,” Appl. Phys. Lett. 25, 641–643 (1974).
    [CrossRef]
  23. D. J. Smith, “Modeling of nodular defects in thin films for various deposition techniques,” in Modeling of Optical Thin Films, M. R. Jacobson, ed., Proc. SPIE821, 120–128 (1988).
    [CrossRef]
  24. R. J. Tenc, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
    [CrossRef]
  25. R. Chow, N. Tsujimoto, “Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system,” Appl. Opt. 35, 5095–5101 (1996).
    [CrossRef] [PubMed]
  26. D. W. Reicher, K. C. Jungling, “Influence of crystal structure on the light scatter of zirconium oxide films,” Appl. Opt. 36, 1626–1637 (1997).
    [CrossRef] [PubMed]
  27. P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981).
    [CrossRef] [PubMed]
  28. F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
    [CrossRef]
  29. C. K. Carniglia, “Effects of dispersion on the determination of optical constants of thin films,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. SPIE652, 158–165 (1986).
    [CrossRef]
  30. J. P. Black, “Scatter instrument design with measurement applications to fused silica and air,” M.S. thesis (University of New Mexico, Albuquerque, New Mexico, 1993).
  31. J. C. Stover, Optical Scattering Measurement and Analysis (SPIE, Bellingham, Wash., 1995).
    [CrossRef]
  32. R. Jacobson, “Light reflection from films of continuously varying index,” in Progress in Optics, E. Wolf, ed. (North Holland, Amsterdam, 1966), Vol. 5, pp. 247–286.
    [CrossRef]
  33. C. K. Carniglia, “Scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
    [CrossRef]
  34. J. M. Eastman, “Scattering by all-dielectric multilayer bandpass filters and mirrors for lasers,” in Physics of Thin Films, Advances in Research and Development, G. Hass, M. H. Francombe, eds. (Academic, New York, 1978), Vol. 10, pp. 167–226.
  35. M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
    [CrossRef]
  36. A. van der Drift, “Evolutionary selection, a principle governing growth orientation in vapor-deposited layers,” Philips Res. Rep. 22, 267–288 (1967).

1999 (1)

M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
[CrossRef]

1997 (2)

1996 (2)

1994 (2)

R. J. Tenc, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
[CrossRef]

1993 (2)

1992 (1)

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

1991 (2)

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
[CrossRef]

1990 (1)

1984 (1)

1982 (1)

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

1981 (1)

1979 (2)

D. Smith, P. Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18, 111–115 (1979).
[CrossRef] [PubMed]

C. K. Carniglia, “Scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

1974 (1)

D. Henderson, M. H. Brodsky, P. Chaudhari, “Simulation of structural anisotropy and void fraction in amorphous thin films,” Appl. Phys. Lett. 25, 641–643 (1974).
[CrossRef]

1970 (1)

I. A. El-Shanshoury, V. A. Rudenko, I. A. Ibrahim, “Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides,” J. Am. Ceram. Soc. 53, 264–268 (1970).
[CrossRef]

1969 (1)

B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide,” Phys. Met. Metallogr. (USSR) 28, 83–90 (1969).

1967 (1)

A. van der Drift, “Evolutionary selection, a principle governing growth orientation in vapor-deposited layers,” Philips Res. Rep. 22, 267–288 (1967).

Al-Jumaily, G. A.

Al-Jumaily, G. Z.

J. J. McNally, G. Z. Al-Jumaily, S. R. Wilson, J. R. McNeil, “Ion beam assisted deposition of optical thin films—recent results,” in Southwest Conference on Optics, 1985, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE540, 479–485 (1985).

Aspnes, D. E.

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

Baumeister, P.

Black, J. P.

J. P. Black, “Scatter instrument design with measurement applications to fused silica and air,” M.S. thesis (University of New Mexico, Albuquerque, New Mexico, 1993).

Bovard, B. G.

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

Brodsky, M. H.

D. Henderson, M. H. Brodsky, P. Chaudhari, “Simulation of structural anisotropy and void fraction in amorphous thin films,” Appl. Phys. Lett. 25, 641–643 (1974).
[CrossRef]

Carniglia, C. K.

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

C. K. Carniglia, “Scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

C. K. Carniglia, “Effects of dispersion on the determination of optical constants of thin films,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. SPIE652, 158–165 (1986).
[CrossRef]

B. J. Pond, R. A. Schmell, C. K. Carniglia, T. Raj, “Comparison of the optical properties of some high-index oxide films prepared by ion beam sputter deposition with those of electron beam evaporated films,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, D. Milam, A. H. Guenther, B. E. Newnam, eds., National Bureau of Standards Special Pub. 752 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

D. W. Reicher, K. C. Jungling, C. K. Carniglia, “Contamination of surfaces prior to optical coating by in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 154–165 (1993).

Chaudhari, P.

D. Henderson, M. H. Brodsky, P. Chaudhari, “Simulation of structural anisotropy and void fraction in amorphous thin films,” Appl. Phys. Lett. 25, 641–643 (1974).
[CrossRef]

Chow, R.

Croitoru, N.

M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
[CrossRef]

Demchishin, A. V.

B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide,” Phys. Met. Metallogr. (USSR) 28, 83–90 (1969).

Duparré, A.

Eastman, J. M.

J. M. Eastman, “Scattering by all-dielectric multilayer bandpass filters and mirrors for lasers,” in Physics of Thin Films, Advances in Research and Development, G. Hass, M. H. Francombe, eds. (Academic, New York, 1978), Vol. 10, pp. 167–226.

Edlou, S. M.

El-Shanshoury, I. A.

I. A. El-Shanshoury, V. A. Rudenko, I. A. Ibrahim, “Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides,” J. Am. Ceram. Soc. 53, 264–268 (1970).
[CrossRef]

Falabella, S.

Fan, R.

Z. Fan, Q. Zhao, H. Qiu, R. Fan, “Laser-induced damage in optical coatings and laser conditioning technology,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 469–474 (1998).

Fan, Z.

Z. Fan, Q. Zhao, H. Qiu, R. Fan, “Laser-induced damage in optical coatings and laser conditioning technology,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 469–474 (1998).

Friedbacher, G.

M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
[CrossRef]

Gilo, M.

M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
[CrossRef]

Grasserbauer, M.

M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
[CrossRef]

Gunther, K. H.

Henderson, D.

D. Henderson, M. H. Brodsky, P. Chaudhari, “Simulation of structural anisotropy and void fraction in amorphous thin films,” Appl. Phys. Lett. 25, 641–643 (1974).
[CrossRef]

Hildum, E. A.

F. Rainer, E. A. Hildum, D. Milam, “Database of average-power damage thresholds at 1064 nm,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., National Bureau of Standards Special Pub. 756 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

Ibrahim, I. A.

I. A. El-Shanshoury, V. A. Rudenko, I. A. Ibrahim, “Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides,” J. Am. Ceram. Soc. 53, 264–268 (1970).
[CrossRef]

Jacobson, R.

R. Jacobson, “Light reflection from films of continuously varying index,” in Progress in Optics, E. Wolf, ed. (North Holland, Amsterdam, 1966), Vol. 5, pp. 247–286.
[CrossRef]

Jakobs, S.

Jungling, K. C.

D. W. Reicher, K. C. Jungling, “Influence of crystal structure on the light scatter of zirconium oxide films,” Appl. Opt. 36, 1626–1637 (1997).
[CrossRef] [PubMed]

D. W. Reicher, K. C. Jungling, C. K. Carniglia, “Contamination of surfaces prior to optical coating by in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 154–165 (1993).

Kaiser, N.

U. B. Schallenberg, N. Kaiser, “Damage-resistant thin-film plate polarizer,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2966, 243–249 (1997).

Kozlowski, M. R.

R. J. Tenc, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

Lehan, J. P.

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

Leskela, M.

M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
[CrossRef]

Loomis, G. E.

Macleod, H. A.

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

Mao, Y.

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

Martin, P. J.

P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
[CrossRef]

McNally, J. J.

J. J. McNally, G. Z. Al-Jumaily, S. R. Wilson, J. R. McNeil, “Ion beam assisted deposition of optical thin films—recent results,” in Southwest Conference on Optics, 1985, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE540, 479–485 (1985).

McNeil, J. R.

J. J. McNally, G. Z. Al-Jumaily, S. R. Wilson, J. R. McNeil, “Ion beam assisted deposition of optical thin films—recent results,” in Southwest Conference on Optics, 1985, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE540, 479–485 (1985).

Milam, D.

F. Rainer, E. A. Hildum, D. Milam, “Database of average-power damage thresholds at 1064 nm,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., National Bureau of Standards Special Pub. 756 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

Movchan, B. A.

B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide,” Phys. Met. Metallogr. (USSR) 28, 83–90 (1969).

Netterfield, R. P.

P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
[CrossRef]

Niinisto, L.

M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
[CrossRef]

Pawlewicz, W. T.

Petersen, G. A.

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Pond, B. J.

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

B. J. Pond, R. A. Schmell, C. K. Carniglia, T. Raj, “Comparison of the optical properties of some high-index oxide films prepared by ion beam sputter deposition with those of electron beam evaporated films,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, D. Milam, A. H. Guenther, B. E. Newnam, eds., National Bureau of Standards Special Pub. 752 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

Prohaska, T.

M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
[CrossRef]

Qiu, H.

Z. Fan, Q. Zhao, H. Qiu, R. Fan, “Laser-induced damage in optical coatings and laser conditioning technology,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 469–474 (1998).

Rainer, F.

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

F. Rainer, E. A. Hildum, D. Milam, “Database of average-power damage thresholds at 1064 nm,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., National Bureau of Standards Special Pub. 756 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

Raj, T.

B. J. Pond, R. A. Schmell, C. K. Carniglia, T. Raj, “Comparison of the optical properties of some high-index oxide films prepared by ion beam sputter deposition with those of electron beam evaporated films,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, D. Milam, A. H. Guenther, B. E. Newnam, eds., National Bureau of Standards Special Pub. 752 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

Reicher, D. W.

D. W. Reicher, K. C. Jungling, “Influence of crystal structure on the light scatter of zirconium oxide films,” Appl. Opt. 36, 1626–1637 (1997).
[CrossRef] [PubMed]

D. W. Reicher, K. C. Jungling, C. K. Carniglia, “Contamination of surfaces prior to optical coating by in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 154–165 (1993).

Ritala, M.

M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
[CrossRef]

Rudenko, V. A.

I. A. El-Shanshoury, V. A. Rudenko, I. A. Ibrahim, “Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides,” J. Am. Ceram. Soc. 53, 264–268 (1970).
[CrossRef]

Sargent, R. B.

R. B. Sargent, “Effects of surface diffusion on thin film morphology: a computer study,” in Modeling of Optical Thin Films II, M. R. Jacobson, ed., Proc. SPIE1324, 13–31 (1990).
[CrossRef]

Schallenberg, U. B.

U. B. Schallenberg, N. Kaiser, “Damage-resistant thin-film plate polarizer,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2966, 243–249 (1997).

Schmell, R. A.

B. J. Pond, R. A. Schmell, C. K. Carniglia, T. Raj, “Comparison of the optical properties of some high-index oxide films prepared by ion beam sputter deposition with those of electron beam evaporated films,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, D. Milam, A. H. Guenther, B. E. Newnam, eds., National Bureau of Standards Special Pub. 752 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

Smajkiewicz, A.

Smith, D.

Smith, D. J.

D. J. Smith, “Modeling of nodular defects in thin films for various deposition techniques,” in Modeling of Optical Thin Films, M. R. Jacobson, ed., Proc. SPIE821, 120–128 (1988).
[CrossRef]

Spann, J. F.

Stolz, C. J.

Stover, J. C.

J. C. Stover, Optical Scattering Measurement and Analysis (SPIE, Bellingham, Wash., 1995).
[CrossRef]

Temple, P. A.

Tenc, R. J.

R. J. Tenc, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Thornton, J. A.

J. A. Thornton, “Structure-zone models of thin films,” in Modeling of Optical Thin Films, M. R. Jacobson, ed., Proc. SPIE821, 95–103 (1988).
[CrossRef]

Torr, D. G.

Torr, M. R.

Traylor Kruschwitz, J. D.

Tsujimoto, N.

van der Drift, A.

A. van der Drift, “Evolutionary selection, a principle governing growth orientation in vapor-deposited layers,” Philips Res. Rep. 22, 267–288 (1967).

Williams, F. L.

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Wilson, S. R.

J. J. McNally, G. Z. Al-Jumaily, S. R. Wilson, J. R. McNeil, “Ion beam assisted deposition of optical thin films—recent results,” in Southwest Conference on Optics, 1985, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE540, 479–485 (1985).

Zhao, Q.

Z. Fan, Q. Zhao, H. Qiu, R. Fan, “Laser-induced damage in optical coatings and laser conditioning technology,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 469–474 (1998).

Zukic, J. M.

Appl. Opt. (10)

D. Smith, P. Baumeister, “Refractive index of some oxide and fluoride coating materials,” Appl. Opt. 18, 111–115 (1979).
[CrossRef] [PubMed]

P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981).
[CrossRef] [PubMed]

K. H. Gunther, “Microstructure of vapor-deposited optical coatings,” Appl. Opt. 23, 3806–3816 (1984).
[CrossRef]

J. M. Zukic, D. G. Torr, J. F. Spann, M. R. Torr, “Vacuum ultraviolet thin films. 1: Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3 HfO2, and SiO2 thin films,” Appl. Opt. 29, 4284–4292 (1990).
[CrossRef] [PubMed]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, M. R. Kozlowski, “Reactive evaporation of low-defect hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef] [PubMed]

S. M. Edlou, A. Smajkiewicz, G. A. Al-Jumaily, “Optical properties and environmental stability of oxide coatings deposited by reactive sputtering,” Appl. Opt. 32, 5601–5605 (1993).
[CrossRef] [PubMed]

D. W. Reicher, K. C. Jungling, “Influence of crystal structure on the light scatter of zirconium oxide films,” Appl. Opt. 36, 1626–1637 (1997).
[CrossRef] [PubMed]

A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
[CrossRef] [PubMed]

R. Chow, N. Tsujimoto, “Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system,” Appl. Opt. 35, 5095–5101 (1996).
[CrossRef] [PubMed]

J. D. Traylor Kruschwitz, W. T. Pawlewicz, “Optical and durability properties of infrared transmitting thin films,” Appl. Opt. 36, 2157–2159 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. Henderson, M. H. Brodsky, P. Chaudhari, “Simulation of structural anisotropy and void fraction in amorphous thin films,” Appl. Phys. Lett. 25, 641–643 (1974).
[CrossRef]

J. Am. Ceram. Soc. (1)

I. A. El-Shanshoury, V. A. Rudenko, I. A. Ibrahim, “Polymorphic behavior of thin evaporated films of zirconium and hafnium oxides,” J. Am. Ceram. Soc. 53, 264–268 (1970).
[CrossRef]

J. Vac. Sci. Technol. A (2)

R. J. Tenc, R. Chow, M. R. Kozlowski, “Characterization of defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Opt. Eng. (1)

C. K. Carniglia, “Scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
[CrossRef]

Philips Res. Rep. (1)

A. van der Drift, “Evolutionary selection, a principle governing growth orientation in vapor-deposited layers,” Philips Res. Rep. 22, 267–288 (1967).

Phys. Met. Metallogr. (USSR) (1)

B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium oxide,” Phys. Met. Metallogr. (USSR) 28, 83–90 (1969).

Thin Solid Films (5)

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

J. P. Lehan, Y. Mao, B. G. Bovard, H. A. Macleod, “Optical and microstructural properties of hafnium dioxide thin films,” Thin Solid Films 203, 227–250 (1991).
[CrossRef]

M. Gilo, N. Croitoru, “Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source,” Thin Solid Films 350, 203–208 (1999).
[CrossRef]

P. J. Martin, R. P. Netterfield, “Optimization of deposition parameters in ion-assisted deposition of optical thin films,” Thin Solid Films 199, 351–358 (1991).
[CrossRef]

M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, “Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy,” Thin Solid Films 250, 72–80 (1994).
[CrossRef]

Other (14)

J. M. Eastman, “Scattering by all-dielectric multilayer bandpass filters and mirrors for lasers,” in Physics of Thin Films, Advances in Research and Development, G. Hass, M. H. Francombe, eds. (Academic, New York, 1978), Vol. 10, pp. 167–226.

D. J. Smith, “Modeling of nodular defects in thin films for various deposition techniques,” in Modeling of Optical Thin Films, M. R. Jacobson, ed., Proc. SPIE821, 120–128 (1988).
[CrossRef]

Z. Fan, Q. Zhao, H. Qiu, R. Fan, “Laser-induced damage in optical coatings and laser conditioning technology,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, M. J. Soileau, eds., Proc. SPIE3244, 469–474 (1998).

B. J. Pond, R. A. Schmell, C. K. Carniglia, T. Raj, “Comparison of the optical properties of some high-index oxide films prepared by ion beam sputter deposition with those of electron beam evaporated films,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, D. Milam, A. H. Guenther, B. E. Newnam, eds., National Bureau of Standards Special Pub. 752 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

J. J. McNally, G. Z. Al-Jumaily, S. R. Wilson, J. R. McNeil, “Ion beam assisted deposition of optical thin films—recent results,” in Southwest Conference on Optics, 1985, R. S. McDowell, S. C. Stotlar, eds., Proc. SPIE540, 479–485 (1985).

F. Rainer, E. A. Hildum, D. Milam, “Database of average-power damage thresholds at 1064 nm,” in Laser Induced Damage in Optical Materials: 1987, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., National Bureau of Standards Special Pub. 756 (U.S. Government Printing Office, Washington, D.C., 1988), pp. 410–418.

U. B. Schallenberg, N. Kaiser, “Damage-resistant thin-film plate polarizer,” in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2966, 243–249 (1997).

D. W. Reicher, K. C. Jungling, C. K. Carniglia, “Contamination of surfaces prior to optical coating by in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1993, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 154–165 (1993).

J. A. Thornton, “Structure-zone models of thin films,” in Modeling of Optical Thin Films, M. R. Jacobson, ed., Proc. SPIE821, 95–103 (1988).
[CrossRef]

R. B. Sargent, “Effects of surface diffusion on thin film morphology: a computer study,” in Modeling of Optical Thin Films II, M. R. Jacobson, ed., Proc. SPIE1324, 13–31 (1990).
[CrossRef]

C. K. Carniglia, “Effects of dispersion on the determination of optical constants of thin films,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. SPIE652, 158–165 (1986).
[CrossRef]

J. P. Black, “Scatter instrument design with measurement applications to fused silica and air,” M.S. thesis (University of New Mexico, Albuquerque, New Mexico, 1993).

J. C. Stover, Optical Scattering Measurement and Analysis (SPIE, Bellingham, Wash., 1995).
[CrossRef]

R. Jacobson, “Light reflection from films of continuously varying index,” in Progress in Optics, E. Wolf, ed. (North Holland, Amsterdam, 1966), Vol. 5, pp. 247–286.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

In situ TIRM image of the ambient substrate temperature HfO2 film at a half-wave optical thickness at a 44° angle of incidence and at a 514-nm wavelength.

Fig. 2
Fig. 2

In situ TIRM images of the HfO2 films at three-quarter-wave optical thickness at a 44° angle of incidence and at a 514-nm wavelength deposited at (a) ambient and (b) 140 °C substrate temperature.

Fig. 3
Fig. 3

In situ TIRM images of the HfO2 films at five-quarter-wave optical thickness at a 44° angle of incidence and at a 514-nm wavelength deposited at (a) ambient, (b) 80 °C, (c) 140 °C, (d) 200 °C, (e) 260 °C, and (f) 320 °C substrate temperature.

Fig. 4
Fig. 4

In situ TIRM image intensity as a function of film thickness.

Fig. 5
Fig. 5

Bidirectional reflectance distribution function (BRDF) data for the six HfO2 films measured with s-polarized light incident at 60°.

Fig. 6
Fig. 6

AFM images of the six HfO2 films: (a) ambient, (b) 80 °C, (c) 140 °C, (d) 200 °C, (e) 260 °C, and (f) 320 °C substrate deposition temperature.

Fig. 7
Fig. 7

Average refractive index at 514 nm of the six HfO2 films.

Fig. 8
Fig. 8

Refractive index at 514 nm of the six HfO2 films at the substrate–film and film–air interfaces.

Fig. 9
Fig. 9

XRD patterns of the six HfO2 films: (a) ambient, (b) 80 °C, (c) 140 °C, (d) 200 °C, (e) 260 °C, and (f) 320 °C substrate deposition temperature.

Tables (1)

Tables Icon

Table 1 Parameters of the Six HfO2 Films

Metrics