Abstract

Germanium-coated metal (silver, gold, and copper) hollow waveguides for CO2 laser energy delivery have been fabricated by electron-beam evaporation and plating techniques in which an acid-soluble glass mandrel with small surface roughness was used. The transmission characteristics of Ge-coated metal hollow waveguides were studied. Ge-coated Ag hollow waveguides showed smaller loss, 0.2 dBm, for CO2 laser light than Ge-coated Au and Cu waveguides. The transmission characteristics of Ge-coated Ag hollow waveguides were measured in relation to a core diameter and a bending radius.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
    [CrossRef] [PubMed]
  2. T. Abel, J. Hirsch, A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  3. M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
    [CrossRef]
  4. M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
    [CrossRef]
  5. Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
    [CrossRef]
  6. A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
    [CrossRef]
  7. Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
    [CrossRef]
  8. Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide–coated silver waveguides for carbon dioxide laser light,” Appl. Opt. 31, 6441–6445 (1992).
    [CrossRef] [PubMed]
  9. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef] [PubMed]
  10. T. Watanabe, H. Hiraga, Y. Abe, M. Miyagi, “Fabrication of silver hollow nickel waveguides with multiple inner dielectric layers by the outer-coating method,” Opt. Lett. 21, 1670–1672 (1996).
    [CrossRef] [PubMed]
  11. Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
    [CrossRef]
  12. Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with CVD-deposited metal and dielectric-coatings,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 64–71 (1996).
    [CrossRef]
  13. Y. Wang, A. Hongo, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
    [CrossRef] [PubMed]
  14. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  15. K. Takatani, Y. Matsuura, M. Miyagi, “Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces,” Appl. Opt. 34, 4352–4357 (1995).
    [CrossRef] [PubMed]
  16. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef] [PubMed]

1997 (1)

1996 (1)

1995 (2)

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

K. Takatani, Y. Matsuura, M. Miyagi, “Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces,” Appl. Opt. 34, 4352–4357 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

1992 (1)

1990 (5)

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

J. A. Harrington, C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
[CrossRef] [PubMed]

1986 (1)

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1983 (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Abe, S.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Abe, Y.

Abel, T.

Aizawa, M.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Aizawa, Y.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Croitoru, N.

Dror, J.

Gannot, I.

Gregory, C.

Harrington, A.

Harrington, J. A.

J. A. Harrington, C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990).
[CrossRef] [PubMed]

Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with CVD-deposited metal and dielectric-coatings,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 64–71 (1996).
[CrossRef]

Hiraga, H.

Hirsch, J.

Hongo, A.

Y. Wang, A. Hongo, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Kato, Y.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Matsuura, Y.

K. Takatani, Y. Matsuura, M. Miyagi, “Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces,” Appl. Opt. 34, 4352–4357 (1995).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide–coated silver waveguides for carbon dioxide laser light,” Appl. Opt. 31, 6441–6445 (1992).
[CrossRef] [PubMed]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with CVD-deposited metal and dielectric-coatings,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 64–71 (1996).
[CrossRef]

Miura, D.

Miyagi, M.

Y. Wang, A. Hongo, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

T. Watanabe, H. Hiraga, Y. Abe, M. Miyagi, “Fabrication of silver hollow nickel waveguides with multiple inner dielectric layers by the outer-coating method,” Opt. Lett. 21, 1670–1672 (1996).
[CrossRef] [PubMed]

K. Takatani, Y. Matsuura, M. Miyagi, “Theoretical and experimental investigations of loss behavior in the infrared in quartz hollow waveguides with rough inner surfaces,” Appl. Opt. 34, 4352–4357 (1995).
[CrossRef] [PubMed]

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide–coated silver waveguides for carbon dioxide laser light,” Appl. Opt. 31, 6441–6445 (1992).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Morosawa, K.

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Nishida, S.

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

Onodera, S.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Ozawa, M.

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

Sakamoto, K.

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

Shimada, Y.

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

Shimomura, T.

Shiota, T.

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

Takatani, K.

Wang, Y.

Watanabe, T.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Electron Lett. (1)

Y. Kato, M. Ozawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron Lett. 31, 31–32 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990).
[CrossRef]

J. Appl. Phys. (2)

Y. Matsuura, M. Miyagi, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, “Fabrication and transmission properties of electrically deposited germanium-coated waveguides for infrared radiation,” J. Appl. Phys. 60, 454–456 (1986).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Opt. Laser Technol. (1)

Y. Matsuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Opt. Lett. (3)

Other (1)

Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with CVD-deposited metal and dielectric-coatings,” in Biomedical Fiber Optics, J. A. Harrington, A. Katzir, eds., Proc. SPIE2677, 64–71 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Reflectance of Ge thin films of various thicknesses upon metal (Ag, Au, Cu) substrates.

Fig. 2
Fig. 2

Schematic of the film-deposition system for fabrication of hollow waveguides.

Fig. 3
Fig. 3

Processing steps for fabrication of a hollow waveguide.

Fig. 4
Fig. 4

Experimental setup for measurements of CO2 laser power transmission. (1 in. = 2.54 cm).

Fig. 5
Fig. 5

Transmission attenuation of a Ge–Ag hollow waveguide versus thickness of the Ge layer for two ZnSe lenses, where f is the focal length.

Fig. 6
Fig. 6

Bending losses in Ge–Ag hollow waveguides with inner diameters d as shown.

Fig. 7
Fig. 7

Transmission attenuation of a Ge–Ag hollow waveguide as a function of inner diameter.

Fig. 8
Fig. 8

Transmission attenuation of a Ge–Ag hollow waveguide with an average inner diameter of 0.65 mm as a function of the standard deviation of inner-diameter fluctuation.

Fig. 9
Fig. 9

Transmission attenuation of a Ge–Au hollow waveguide versus thickness of the Ge layer for two ZnSe lenses, where f is the focal length.

Fig. 10
Fig. 10

Transmission attenuation of a Ge–Cu hollow waveguide versus thickness of the Ge layer for two ZnSe lenses, where f is the focal length.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α=U0/2πλ2/a3n/n2+κ2metalFfilm,
Tz=0π/2 I0θexp-2αθzsinθdθ0π/2 I0θsinθdθ,
2αθ=1-Rθ/2a cot θ.
Rθ=RTEθ+RTMθ/2,
RTE=R0TE exp-4πnσ cos θ/λ2,
RTM=R0TM exp-4πnσ cos θ/λ2,
2αθ=2α0θ+2αrθ,
α0θ=n0k0a sinθ/2π2λ2/a3Reñ2+1/2ñ2-11/2.
αrθ=n0κ0σ2 sinθ/2a cotθπn0κ0/S1/2, n0κ0S  1,
αrθ=πn0κ03σ2 sinθ/4a cotθS, n0κ0S  1,
d=λ/2πnd2-1tan-1nd/nd2-11/4,

Metrics