Abstract

A highly efficient Talbot array illuminator for single-shot, laser-induced-damage test measurements of optical thin-film coatings is proposed. With a periodic binary phase grating, a laser beam is transformed into an ensemble of Gaussian-like spots, which are known as the Fresnel image of the grating. For this purpose hexagonal phase gratings were fabricated and analyzed. With a peak fluence distribution of ∼1 order of magnitude, the damage threshold of thin films can be deduced by use of the data from only a single shot.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Becker, A. Bernhardt, “ISO 11254, an international standard for the determination of the laser induced damage threshold,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 703–712 (1993).
  2. T. W. Walker, A. H. Guenther, P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
    [CrossRef]
  3. E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach, E. Hacker, “Laser conditioning of LaF3/MgF2 dielectric coatings at 248 nm,” Appl. Opt. 35, 5613–5619 (1996).
    [CrossRef] [PubMed]
  4. T. A. Wiggins, T. T. Saito, R. M. Herman, “Hole gratings for laser damage testing,” Appl. Opt. 22, 3388–3396 (1983).
    [CrossRef] [PubMed]
  5. J. Ebert, E. Kiesel, “Measurement of laser-induced damage with an unstable resonator-type laser,” Appl. Opt. 23, 3759–3761 (1984).
    [CrossRef] [PubMed]
  6. M. Thomas, “Testing optical coatings,” Lasers Optron. 12, 33–34 (1995).
  7. F. Loewenthal, R. Tommasini, J. R. Balmer, “Single-shot measurement of laser-induced damage thresholds of thin film coatings,” Opt. Commun. 152, 168–174 (1998).
    [CrossRef]
  8. J. T. Winthrop, C. R. Worthington, “Theory of Fresnel images. I. Plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55, 373–381 (1965).
    [CrossRef]
  9. A. W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik 79, 41–45 (1987).
  10. A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
    [CrossRef] [PubMed]
  11. V. Arrizon, J. Ojeda-Castaneda, “Multilevel phase gratings for array illuminators,” Appl. Opt. 33, 5925–5931 (1994).
    [CrossRef] [PubMed]
  12. V. Arrizon, E. Olazagasti-Lopez, A. Serrano-Heredia, “Talbot array illuminators with optimum compression ratio,” Opt. Lett. 21, 233–235 (1996).
    [CrossRef] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  14. W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. B 71, 7–14 (1980).
  15. D. E. Silva, “A simple interferometric method of beam collimation,” Appl. Opt. 10, 1980–1982 (1971).
    [CrossRef]
  16. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546–547 (1967).
    [CrossRef] [PubMed]

1998

F. Loewenthal, R. Tommasini, J. R. Balmer, “Single-shot measurement of laser-induced damage thresholds of thin film coatings,” Opt. Commun. 152, 168–174 (1998).
[CrossRef]

1996

1995

M. Thomas, “Testing optical coatings,” Lasers Optron. 12, 33–34 (1995).

1994

1990

1987

A. W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik 79, 41–45 (1987).

1984

1983

1981

T. W. Walker, A. H. Guenther, P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

1980

W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. B 71, 7–14 (1980).

1971

1967

1965

Anton, B.

Arrizon, V.

Balmer, J. R.

F. Loewenthal, R. Tommasini, J. R. Balmer, “Single-shot measurement of laser-induced damage thresholds of thin film coatings,” Opt. Commun. 152, 168–174 (1998).
[CrossRef]

Becker, J.

J. Becker, A. Bernhardt, “ISO 11254, an international standard for the determination of the laser induced damage threshold,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 703–712 (1993).

Bernhardt, A.

J. Becker, A. Bernhardt, “ISO 11254, an international standard for the determination of the laser induced damage threshold,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 703–712 (1993).

Ebert, J.

Eva, E.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Guenther, A. H.

T. W. Walker, A. H. Guenther, P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

Hacker, E.

Henking, R.

Herman, R. M.

Kaiser, N.

Kiesel, E.

Loewenthal, F.

F. Loewenthal, R. Tommasini, J. R. Balmer, “Single-shot measurement of laser-induced damage thresholds of thin film coatings,” Opt. Commun. 152, 168–174 (1998).
[CrossRef]

Lohmann, A. W.

A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
[CrossRef] [PubMed]

A. W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik 79, 41–45 (1987).

Mademann, D.

Mann, K.

Nielsen, P. E.

T. W. Walker, A. H. Guenther, P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

Ojeda-Castaneda, J.

Olazagasti-Lopez, E.

Raupach, L.

Ristau, D.

Saito, T. T.

Serrano-Heredia, A.

Sherman, G. C.

Silva, D. E.

Southwell, W. H.

W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. B 71, 7–14 (1980).

Thomas, J. A.

Thomas, M.

M. Thomas, “Testing optical coatings,” Lasers Optron. 12, 33–34 (1995).

Tommasini, R.

F. Loewenthal, R. Tommasini, J. R. Balmer, “Single-shot measurement of laser-induced damage thresholds of thin film coatings,” Opt. Commun. 152, 168–174 (1998).
[CrossRef]

Walker, T. W.

T. W. Walker, A. H. Guenther, P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

Weissbrodt, P.

Wiggins, T. A.

Winthrop, J. T.

Worthington, C. R.

Appl. Opt.

IEEE J. Quantum Electron.

T. W. Walker, A. H. Guenther, P. E. Nielsen, “Pulsed laser-induced damage to thin-film optical coatings. I. Experimental,” IEEE J. Quantum Electron. QE-17, 2041–2052 (1981).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. B 71, 7–14 (1980).

Lasers Optron.

M. Thomas, “Testing optical coatings,” Lasers Optron. 12, 33–34 (1995).

Opt. Commun.

F. Loewenthal, R. Tommasini, J. R. Balmer, “Single-shot measurement of laser-induced damage thresholds of thin film coatings,” Opt. Commun. 152, 168–174 (1998).
[CrossRef]

Opt. Lett.

Optik

A. W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik 79, 41–45 (1987).

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

J. Becker, A. Bernhardt, “ISO 11254, an international standard for the determination of the laser induced damage threshold,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2114, 703–712 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. The DOE, a binary phase plate, is followed by a spherical lens with focal length f. F1–F3, positions of Fresnel images; CCD, camera; P, joulemeter; BS, beam splitter; S, sample.

Fig. 2
Fig. 2

Demonstration of the walk-off effect for a finite hexagonal phase grating. In the first Fresnel image plane (a), the sharp spikes show the presence of higher spatial frequencies. With increasing propagation length from the second (b) to the third (c) and the fourth (d) Fresnel image planes, these higher frequencies walk off, and the spot shape changes from a super-Gaussian to a Gaussian profile.

Fig. 3
Fig. 3

(a), (b), (c) Calculated diffraction patterns of the hexagonal phase grating with grating constant d = 1 mm and an aperture ratio w/ d = 1/2 in the second (z = 71 cm), third (z = 80 cm), and fourth (z = 85 cm) Fresnel image planes, respectively. (d), (e), (f), Measured diffraction patterns at the corresponding locations z = 71 cm, z = 80 cm, and z = 85 cm, respectively. The laser beam of ∼20-mm diameter is focused with an f = 100 cm spherical lens.

Fig. 4
Fig. 4

(a) Details of the binary mask (exposed black-and-white transparent film) of a hexagonal grating. (b) Corresponding structure etched in a borosilicate glass wafer, and (c) detail of the step with an etching depth of 510 ± 10 nm. The small dark spots in (a) are little porosities of the film substrate.

Fig. 5
Fig. 5

Scans through the center of the measured (solid curves) and the calculated (dotted curves) Fresnel image with the hexagonal phase grating (d = 1 mm) at position z = 80 cm: (a) horizontal scan, (b) vertical scan. The vertical profile of the central spot is shown in (c).

Fig. 6
Fig. 6

Histogram of the peak fluence distribution at the position of the third Fresnel image of the hexagonal phase grating. The pulse energy and pulse duration are 400 mJ and 450 ps, respectively.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Ur, 0=exp-r/R2n,
tfr=expik2fr2,
tPHPr=tCrsr=expΘ|r|-d/2iφ0m,n=- δr-ma-nb,
Θ=0x<01/2x=01x>0.
Hα, β, z=Aα, β, zAα, β, 0=exp-ikz1-α2-β21/2,
Aα, β, 0=FTUx, y, 0,
Aα, β, z=FTUx, y, z,
Ux, y, z=FT-1HzFTtPHPrtfrUx, y, 0.
ZT=Ωabλ,
Ω=2RaRb sin2 γ.
ZT=3d22λ.
Zn,F=n+pqZT,
1z=1f+1z.
1zn,F=1f+1n+p/qZT.
1zn,F=1f+1n+2/3ZT,  n=0, 1, 2,.
C=Energy counts.

Metrics