Abstract

We describe a microfabrication process for fabricating micropolarizer devices with polarization thin film. The polarization film is less than a 0.5 µm thick and can have a polarization extinction ratio of ∼330 in the visible wavelength range. A single-state micropolarizer array with polarizing pixels as small as 5 µm × 5 µm has been fabricated. A multilayer spatially multiplexed three-state micropolarizer line array with a 14.4-µm resolution has also been fabricated for visible imaging polarimetry application.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Wolff, “Applications of polarization camera technology,” IEEE Expert: Intell. Syst. Appl. 10, 30–38 (1995).
    [CrossRef]
  2. L. B. Wolff, “Surface orientation from polarization images,” in Optics, Illumination and Image Sensing for Machine Vision II, D. J. Svetkoff, ed., Proc. SPIE850, 110–121 (1995).
    [CrossRef]
  3. L. B. Wolff, A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
    [CrossRef]
  4. S. M. Faris, “Multimode stereoscopic imaging system,” U.S. patent5,264,964 (23November1993).
  5. H. Hertz, Electric Waves (Macmillan, London, 1983).
  6. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [CrossRef]
  7. R. E. Slocum, “Evaporative thin metal films as polarizers,” in Polarizers and Applications, G. B. Trapani, ed., Proc. SPIE30, 25–30 (1981).
  8. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  9. S. M. Faris, “Methods for manufacturing micropolarizers,” U.S. patent5,327,285 (5July1994).
  10. J. P. Guo, D. J. Brady, “Fabrication of high resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
    [CrossRef]
  11. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399 (1852).
  12. M. Born, E. Wolf, Principles of Optics (Pressman, New York, 1990).
  13. S. E. Sheppard, R. H. Lambert, R. D. Walker, “Optical sensitizing of silver halides by dyes,” J. Chem. Phys. 7, 265–273 (1939).
    [CrossRef]
  14. S. Anderson, “Orientation of methylene blue molecules adsorbed on solids,” J. Opt. Soc. Am. 39, 49–56 (1949).
    [CrossRef] [PubMed]
  15. J. F. Dreyer, “Optically polarizing dichroic film and method of preparing the same,” U.S. patent2,481,830 (13September1949).
  16. J. F. Dreyer, “Optical device and method and manufacture thereof,” U.S. patent2,400,877 (28May1946).
  17. J. F. Dreyer, “Flexible noncrystalline self-contained polarizing films and methods of making and using the same,” U.S. patent2,524,286 (3October1950).

1999 (1)

1997 (1)

J. P. Guo, D. J. Brady, “Fabrication of high resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

1995 (2)

L. B. Wolff, “Applications of polarization camera technology,” IEEE Expert: Intell. Syst. Appl. 10, 30–38 (1995).
[CrossRef]

L. B. Wolff, A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
[CrossRef]

1960 (1)

1949 (1)

1939 (1)

S. E. Sheppard, R. H. Lambert, R. D. Walker, “Optical sensitizing of silver halides by dyes,” J. Chem. Phys. 7, 265–273 (1939).
[CrossRef]

1852 (1)

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399 (1852).

Anderson, S.

Andreou, A. G.

L. B. Wolff, A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
[CrossRef]

Bird, G. R.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pressman, New York, 1990).

Brady, D. J.

J. P. Guo, D. J. Brady, “Fabrication of high resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Deguzman, P. C.

Dreyer, J. F.

J. F. Dreyer, “Optically polarizing dichroic film and method of preparing the same,” U.S. patent2,481,830 (13September1949).

J. F. Dreyer, “Optical device and method and manufacture thereof,” U.S. patent2,400,877 (28May1946).

J. F. Dreyer, “Flexible noncrystalline self-contained polarizing films and methods of making and using the same,” U.S. patent2,524,286 (3October1950).

Faris, S. M.

S. M. Faris, “Multimode stereoscopic imaging system,” U.S. patent5,264,964 (23November1993).

S. M. Faris, “Methods for manufacturing micropolarizers,” U.S. patent5,327,285 (5July1994).

Guo, J. P.

J. P. Guo, D. J. Brady, “Fabrication of high resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Hertz, H.

H. Hertz, Electric Waves (Macmillan, London, 1983).

Jones, M. W.

Lambert, R. H.

S. E. Sheppard, R. H. Lambert, R. D. Walker, “Optical sensitizing of silver halides by dyes,” J. Chem. Phys. 7, 265–273 (1939).
[CrossRef]

Meier, J. T.

Nordin, G. P.

Parrish, M.

Sheppard, S. E.

S. E. Sheppard, R. H. Lambert, R. D. Walker, “Optical sensitizing of silver halides by dyes,” J. Chem. Phys. 7, 265–273 (1939).
[CrossRef]

Slocum, R. E.

R. E. Slocum, “Evaporative thin metal films as polarizers,” in Polarizers and Applications, G. B. Trapani, ed., Proc. SPIE30, 25–30 (1981).

Stokes, G. G.

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399 (1852).

Walker, R. D.

S. E. Sheppard, R. H. Lambert, R. D. Walker, “Optical sensitizing of silver halides by dyes,” J. Chem. Phys. 7, 265–273 (1939).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pressman, New York, 1990).

Wolff, L. B.

L. B. Wolff, “Applications of polarization camera technology,” IEEE Expert: Intell. Syst. Appl. 10, 30–38 (1995).
[CrossRef]

L. B. Wolff, A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
[CrossRef]

L. B. Wolff, “Surface orientation from polarization images,” in Optics, Illumination and Image Sensing for Machine Vision II, D. J. Svetkoff, ed., Proc. SPIE850, 110–121 (1995).
[CrossRef]

IEEE Expert: Intell. Syst. Appl. (1)

L. B. Wolff, “Applications of polarization camera technology,” IEEE Expert: Intell. Syst. Appl. 10, 30–38 (1995).
[CrossRef]

Image Vision Comput. (1)

L. B. Wolff, A. G. Andreou, “Polarization camera sensors,” Image Vision Comput. 13, 497–510 (1995).
[CrossRef]

J. Chem. Phys. (1)

S. E. Sheppard, R. H. Lambert, R. D. Walker, “Optical sensitizing of silver halides by dyes,” J. Chem. Phys. 7, 265–273 (1939).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

J. P. Guo, D. J. Brady, “Fabrication of high resolution micropolarizer arrays,” Opt. Eng. 36, 2268–2271 (1997).
[CrossRef]

Trans. Cambridge Philos. Soc. (1)

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399 (1852).

Other (9)

M. Born, E. Wolf, Principles of Optics (Pressman, New York, 1990).

L. B. Wolff, “Surface orientation from polarization images,” in Optics, Illumination and Image Sensing for Machine Vision II, D. J. Svetkoff, ed., Proc. SPIE850, 110–121 (1995).
[CrossRef]

S. M. Faris, “Multimode stereoscopic imaging system,” U.S. patent5,264,964 (23November1993).

H. Hertz, Electric Waves (Macmillan, London, 1983).

S. M. Faris, “Methods for manufacturing micropolarizers,” U.S. patent5,327,285 (5July1994).

R. E. Slocum, “Evaporative thin metal films as polarizers,” in Polarizers and Applications, G. B. Trapani, ed., Proc. SPIE30, 25–30 (1981).

J. F. Dreyer, “Optically polarizing dichroic film and method of preparing the same,” U.S. patent2,481,830 (13September1949).

J. F. Dreyer, “Optical device and method and manufacture thereof,” U.S. patent2,400,877 (28May1946).

J. F. Dreyer, “Flexible noncrystalline self-contained polarizing films and methods of making and using the same,” U.S. patent2,524,286 (3October1950).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transmission of polarization thin film versus the polarization of the incident light at the 0.6328-µm wavelength.

Fig. 2
Fig. 2

Fabrication process of a single-state micropolarizer array.

Fig. 3
Fig. 3

Micropolarizer line array with 14.4-µm resolution taken by (a) perpendicular incident light and (b) parallel incident light.

Fig. 4
Fig. 4

Single-state micropolarizer array with a 5 µm × 5 µm pixel size.

Fig. 5
Fig. 5

Cross section of a single-state micropolarizer array with protection layers.

Fig. 6
Fig. 6

(a) Cross section of a two-state micropolarizer array. (b) Cross section of a two-state micropolarizer array with a protection layer.

Fig. 7
Fig. 7

Transmission photographs of a multiaxis micropolarizer array with a 14.4-µm resolution taken (a) by a vertical polarized incident light and (b) by a 45-deg polarized incident light with respect to the vertical direction.

Fig. 8
Fig. 8

Top view of a CMOS sensor array.

Fig. 9
Fig. 9

Top view of a CMOS-based polarization imaging sensor array.

Tables (1)

Tables Icon

Table 1 Plasma RIE Rates for the Polarization Film and the Negative Photoresist

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ex=ax exp2πvt-φx,  Ey=ay exp2πvt-φy,
S0=ax2+ay2, S1=ax2-ay2, S2=2axay cosφy-φx, S3=2axay sinφy-φx,
Et, α=Extcosα+Eytexp-iεsinα,
Iα, ε=Et, αE*t, α=ExEx* cos2α+EyEy* sin2α+|ExEy*| cosφxy-εsin2α,
It, I0°, 0, I45°, 0, I45°, π/2,
S0=It, S1=2I0°, 0-It, S2=2I45°, 0-It, S3=It-2I45°, π/2.

Metrics