Abstract

A guided-mode resonant filter with low sideband reflections is proposed. It is shown that, for serious reduction of out-of band reflectance, the combination of waveguide-grating filter design with conventional antireflective stack design methods is not adequate. To achieve symmetrical low sideband reflectances, independent control of various layer thicknesses is necessary. At a given illumination angle with appropriate control of the waveguide thickness, a specific resonant grating filter is designed whose out-of-band reflectance on both sides of the resonant peak is well below 10-4. Even 50 nm away from the peak, on both sides, the out-of-band reflectance remains below 10-3. Analysis of the variation in the main manufacturing parameters indicates that such filters can be reliably produced with present-day technologies.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  2. M. T. Gale, “Zero-order grating microstructures,” in Optical Document Security, R. L. van Renesse, ed. (Artech House, Boston, Mass., 1994), pp. 187–205.
  3. S. S. Wang, R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995).
    [CrossRef] [PubMed]
  4. S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997).
    [CrossRef]
  5. J. A. Cox, R. A. Morgan, R. Wilke, C. Ford, “Guided-mode grating resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies, I. Chinrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998).
    [CrossRef]
  6. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  7. GSOLVER, from the Grating Solver Development Company, P.O. Box 353, Allen, Tex. 75002 ( http://www.gsolver.com ).
  8. Ph. Lalanne, M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  9. G. Granet, B. Guizal, “Efficient implementation of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).
    [CrossRef]
  10. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  11. S. S. Wang, R. Magnusson, “Design of waveguide-grating filters with symmetrical lineshapes and low sidebands,” Opt. Lett. 19, 919–921 (1994).
    [CrossRef] [PubMed]
  12. R. Magnusson, D. Shin, Z. S. Liu, “Guided-mode resonance Brewster filter,” Opt. Lett. 23, 612–614 (1998).
    [CrossRef]
  13. TFCalc 3.3, Software Spectra, Inc.14025 NW Harvest Lane, Portland, Oreg. 97229 ( http://www.sspectra.com ).
  14. D. Shin, S. Tibuleac, T. A. Maldonado, R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
    [CrossRef]
  15. A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
    [CrossRef]
  16. S. M. Norton, G. M. Morris, T. Erdogan, “Experimental investigation of resonant-grating filter line shapes in comparison with theoretical models,” J. Opt. Soc. Am. A 15, 464–472 (1998).
    [CrossRef]
  17. R. J. Stockermans, P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38, 3714–3719 (1999).
    [CrossRef]
  18. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
    [CrossRef] [PubMed]

1999

1998

1997

1996

1995

1994

1992

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

1983

1982

Cox, J. A.

J. A. Cox, R. A. Morgan, R. Wilke, C. Ford, “Guided-mode grating resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies, I. Chinrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998).
[CrossRef]

Erdogan, T.

Ford, C.

J. A. Cox, R. A. Morgan, R. Wilke, C. Ford, “Guided-mode grating resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies, I. Chinrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998).
[CrossRef]

Friesem, A. A.

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Gale, M. T.

M. T. Gale, “Zero-order grating microstructures,” in Optical Document Security, R. L. van Renesse, ed. (Artech House, Boston, Mass., 1994), pp. 187–205.

Gaylord, T. K.

Granet, G.

Guizal, B.

Lalanne, Ph.

Li, L.

Liu, Z. S.

Macleod, H. A.

Magnusson, R.

Maldonado, T. A.

D. Shin, S. Tibuleac, T. A. Maldonado, R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

Martin, P. J.

Moharam, M. G.

Morgan, R. A.

J. A. Cox, R. A. Morgan, R. Wilke, C. Ford, “Guided-mode grating resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies, I. Chinrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998).
[CrossRef]

Morris, G. M.

Morris, M.

Netterfield, R. P.

Norton, S. M.

Pacey, C. G.

Rochon, P. L.

Rosenblatt, D.

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Sainty, W. G.

Sharon, A.

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Shin, D.

D. Shin, S. Tibuleac, T. A. Maldonado, R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

R. Magnusson, D. Shin, Z. S. Liu, “Guided-mode resonance Brewster filter,” Opt. Lett. 23, 612–614 (1998).
[CrossRef]

Stockermans, R. J.

Tibuleac, S.

D. Shin, S. Tibuleac, T. A. Maldonado, R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997).
[CrossRef]

Wang, S. S.

Wilke, R.

J. A. Cox, R. A. Morgan, R. Wilke, C. Ford, “Guided-mode grating resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies, I. Chinrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

D. Shin, S. Tibuleac, T. A. Maldonado, R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[CrossRef]

Opt. Lett.

Other

TFCalc 3.3, Software Spectra, Inc.14025 NW Harvest Lane, Portland, Oreg. 97229 ( http://www.sspectra.com ).

J. A. Cox, R. A. Morgan, R. Wilke, C. Ford, “Guided-mode grating resonant filters for VCSEL applications,” in Diffractive and Holographic Device Technologies, I. Chinrich, S. H. Lee, eds., Proc. SPIE3291, 70–76 (1998).
[CrossRef]

M. T. Gale, “Zero-order grating microstructures,” in Optical Document Security, R. L. van Renesse, ed. (Artech House, Boston, Mass., 1994), pp. 187–205.

GSOLVER, from the Grating Solver Development Company, P.O. Box 353, Allen, Tex. 75002 ( http://www.gsolver.com ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three-layer resonant-waveguide filter. A TE polarized wave at 34.5 deg with 670-nm wavelength is incident upon a grating in air with a 500-nm period. The other parameters are, from top to bottom: n gr = 1.48, n wg = 2.19, n swg = 1.68, and n s = 1.52. In the same order, the thicknesses are 150, 155, and 160 nm.

Fig. 2
Fig. 2

Reflectance of a two-layer grating-waveguide structure for two incident waves, at 32 and 34 deg, with 670-nm wavelength. The parameters for the structure are grating, n gr = 1.48; waveguide, n wg = 2.19; substrate, n s = 1.68.

Fig. 3
Fig. 3

Resonances close to optimum parameters for three subwaveguide thicknesses: 150, 155, and 160 nm. The structure is illuminated at 34.5 deg; the grating and waveguide thicknesses are 150 and 160 nm, respectively.

Fig. 4
Fig. 4

Sensitivity of resonance as a result of groove filling errors: underetched (top left) and overetched (top right) grooves.

Fig. 5
Fig. 5

Sensitivity of resonance as a result of variation of groove depth errors: underetched (top left) and overetched (right) grooves.

Fig. 6
Fig. 6

Sensitivity of resonance owing to ±2% errors in the values of refractive indices for all three materials. Solid curve, nominal design; dotted curve, worst combination of errors; dashed curve, best combination of errors.

Fig. 7
Fig. 7

Comparison of reflectances in the vicinity of the resonant peak. The thick curve corresponds to the present design.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin ϑ-1>maxnnwg, nswgnwg,
sin ϑill>nswg-λ/p.

Metrics