Abstract

We propose a system for three-dimensional (3D) shape measurement of a diffusing surface by use of a previously developed femtosecond amplifying optical Kerr gate (fs-amp OKG). The system has an opening time of 459 fs and a maximum transmittance of 185%. It also provides good 3D imaging performance: a transverse imaging resolution of 70 µm, a depth resolution of 100 µm, and a positioning accuracy of 5.9 µm in depth. It is found that the optical Kerr effect and the amplification process in the fs-amp OKG do not cause the quality of a time-resolved image to deteriorate. We prove the effectiveness of the proposed system by measuring the shapes of completely diffusing objects with stepped and spherical surfaces.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hausler, W. Heckel, “Light sectioning with large depth and high resolution,” Appl. Opt. 27, 5165–5169 (1988).
    [CrossRef] [PubMed]
  2. V. Srinivasan, H. C. Liu, M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
    [CrossRef] [PubMed]
  3. D. M. Meadows, W. O. Johnson, J. B. Allen, “Generation of surface contours by moiré patterns,” Appl. Opt. 9, 942–947 (1970).
    [CrossRef] [PubMed]
  4. H. Takasaki, “Moiré topography,” Appl. Opt. 9, 1467–1472 (1970).
    [CrossRef] [PubMed]
  5. B. P. Hildebrand, K. A. Haines, “Multiple-wavelength and multiple-source holography applied to contour generation,” J. Opt. Soc. Am. 57, 155–162 (1967).
    [CrossRef]
  6. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  7. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [CrossRef] [PubMed]
  8. N. H. Abramson, K. G. Spears, “Single pulse light-in-flight recording by holography,” Appl. Opt. 28, 1834–1841 (1989).
    [CrossRef] [PubMed]
  9. J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Three-dimensional reflective image reconstruction through a scattering medium based on time-gated Raman amplification,” Opt. Lett. 19, 1234–1236 (1994).
    [CrossRef] [PubMed]
  10. F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
    [CrossRef]
  11. M. A. Duguay, A. T. Mattick, “Ultrahigh-speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2170 (1971).
    [CrossRef] [PubMed]
  12. X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “Time-resolved polarization shadowgrams in turbid media,” Appl. Opt. 36, 2984–2989 (1997).
    [CrossRef] [PubMed]
  13. K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
    [CrossRef]
  14. K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
    [CrossRef]
  15. G. Jonusauskas, R. Gadonas, C. Rullière, “Fast optical Kerr gate with slow nonlinearity,” Opt. Commun. 112, 80–84 (1994).
    [CrossRef]
  16. G. Jonusauskas, J. Oberlé, E. Abraham, C. Rullière, “Fast amplifying optical Kerr gate using stimulated emission of organic non-linear dyes,” Opt. Commun. 137, 199–206 (1997).
    [CrossRef]
  17. K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” submitted to Opt. Commun.
  18. M. D. Duncan, R. Mahon, L. T. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
    [CrossRef] [PubMed]
  19. T. Yasui, K. Minoshima, H. Matsumoto, “Microscopic imaging using a femtosecond amplifying optical Kerr gate,” submitted to Appl. Opt.

1999

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

1997

G. Jonusauskas, J. Oberlé, E. Abraham, C. Rullière, “Fast amplifying optical Kerr gate using stimulated emission of organic non-linear dyes,” Opt. Commun. 137, 199–206 (1997).
[CrossRef]

X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “Time-resolved polarization shadowgrams in turbid media,” Appl. Opt. 36, 2984–2989 (1997).
[CrossRef] [PubMed]

1995

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

1994

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

G. Jonusauskas, R. Gadonas, C. Rullière, “Fast optical Kerr gate with slow nonlinearity,” Opt. Commun. 112, 80–84 (1994).
[CrossRef]

J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Three-dimensional reflective image reconstruction through a scattering medium based on time-gated Raman amplification,” Opt. Lett. 19, 1234–1236 (1994).
[CrossRef] [PubMed]

1991

1990

1989

1988

1984

1971

1970

1967

Abraham, E.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

G. Jonusauskas, J. Oberlé, E. Abraham, C. Rullière, “Fast amplifying optical Kerr gate using stimulated emission of organic non-linear dyes,” Opt. Commun. 137, 199–206 (1997).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” submitted to Opt. Commun.

Abramson, N. H.

Alfano, R. R.

Allen, J. B.

Andersson-Engels, S.

Berg, R.

Devaux, F.

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

Duguay, M. A.

Duncan, M. D.

Gadonas, R.

G. Jonusauskas, R. Gadonas, C. Rullière, “Fast optical Kerr gate with slow nonlinearity,” Opt. Commun. 112, 80–84 (1994).
[CrossRef]

Haines, K. A.

Halioua, M.

Hausler, G.

Hebden, J. C.

Heckel, W.

Hildebrand, B. P.

Ho, P. P.

Jarlman, O.

Johnson, W. O.

Jonusauskas, G.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

G. Jonusauskas, J. Oberlé, E. Abraham, C. Rullière, “Fast amplifying optical Kerr gate using stimulated emission of organic non-linear dyes,” Opt. Commun. 137, 199–206 (1997).
[CrossRef]

G. Jonusauskas, R. Gadonas, C. Rullière, “Fast optical Kerr gate with slow nonlinearity,” Opt. Commun. 112, 80–84 (1994).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” submitted to Opt. Commun.

Kruger, R. A.

Lantz, E.

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

Liang, X.

Liu, H. C.

Mahon, R.

Matsumoto, H.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” submitted to Opt. Commun.

T. Yasui, K. Minoshima, H. Matsumoto, “Microscopic imaging using a femtosecond amplifying optical Kerr gate,” submitted to Appl. Opt.

Mattick, A. T.

Meadows, D. M.

Minoshima, K.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” submitted to Opt. Commun.

T. Yasui, K. Minoshima, H. Matsumoto, “Microscopic imaging using a femtosecond amplifying optical Kerr gate,” submitted to Appl. Opt.

Moon, J. A.

Oberlé, J.

G. Jonusauskas, J. Oberlé, E. Abraham, C. Rullière, “Fast amplifying optical Kerr gate using stimulated emission of organic non-linear dyes,” Opt. Commun. 137, 199–206 (1997).
[CrossRef]

Reintjes, J.

Rullière, C.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

G. Jonusauskas, J. Oberlé, E. Abraham, C. Rullière, “Fast amplifying optical Kerr gate using stimulated emission of organic non-linear dyes,” Opt. Commun. 137, 199–206 (1997).
[CrossRef]

G. Jonusauskas, R. Gadonas, C. Rullière, “Fast optical Kerr gate with slow nonlinearity,” Opt. Commun. 112, 80–84 (1994).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” submitted to Opt. Commun.

Spears, K. G.

Srinivasan, V.

Svanberg, S.

Takasaki, H.

Tankersley, L. T.

Wang, L.

Wong, K. S.

Yagi, T.

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

Yasui, T.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” submitted to Opt. Commun.

T. Yasui, K. Minoshima, H. Matsumoto, “Microscopic imaging using a femtosecond amplifying optical Kerr gate,” submitted to Appl. Opt.

Zhang, Z.

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

K. Minoshima, H. Matsumoto, Z. Zhang, T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33, L1348–L1351 (1994).
[CrossRef]

Opt. Commun.

G. Jonusauskas, R. Gadonas, C. Rullière, “Fast optical Kerr gate with slow nonlinearity,” Opt. Commun. 112, 80–84 (1994).
[CrossRef]

G. Jonusauskas, J. Oberlé, E. Abraham, C. Rullière, “Fast amplifying optical Kerr gate using stimulated emission of organic non-linear dyes,” Opt. Commun. 137, 199–206 (1997).
[CrossRef]

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun. 118, 25–27 (1995).
[CrossRef]

Opt. Eng.

K. Minoshima, T. Yasui, E. Abraham, H. Matsumoto, G. Jonusauskas, C. Rullière, “Three-dimensional imaging using a femtosecond amplifying optical Kerr gate,” Opt. Eng. 38, 1758–1762 (1999).
[CrossRef]

Opt. Lett.

Other

T. Yasui, K. Minoshima, H. Matsumoto, “Microscopic imaging using a femtosecond amplifying optical Kerr gate,” submitted to Appl. Opt.

K. Minoshima, G. Jonusauskas, T. Yasui, E. Abraham, C. Rullière, H. Matsumoto, “Femtosecond amplifying optical Kerr gate,” submitted to Opt. Commun.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for an ultrafast time-resolved 2D imaging system that uses a fs-amp OKG: BS, beam splitter; L1, L2, L3, L4, L5, and L6, lenses with focal lengths of 100, 100, 220, 100, 50, and 300 mm, respectively; other abbreviations defined in text. a = 125 mm, b = 210 mm, c = 390 mm, d = 375 mm, e = 115 mm, f = 50 mm, g = 565 mm, h = 350 mm.

Fig. 2
Fig. 2

Temporal behavior of the fs-amp OKG signal at a probe wavelength of 670 nm. The opening time of 459 ± 28 fs corresponds to a spatial gate of 97.4 ± 5.9 µm. Accuracy in the peak position has a standard deviation of 28 fs in 10 temporal behavior data. A rough sample with a surface Ry (maximum height of the profile) of 1.3 µm was used.

Fig. 3
Fig. 3

Dependence of opening time and collection efficiency on surface roughness. Surface roughness is represented by the maximum height of the profile (Ry). The curve is a guide for the eye.

Fig. 4
Fig. 4

(a) Time-resolved image of the test pattern (11.3 line pairs/mm), (b) intensity profile along line ab, and (c) transverse imaging resolution of the proposed system. The contrast curve of the time-resolved image is compared with that of the reference image without the fs-amp OKG with respect to spatial frequency. The curve is a guide for the eye. lp, line pairs.

Fig. 5
Fig. 5

(a) Sample consisting of a test chart and a thickness gauge; (b) reference image without the fs-amp OKG; (c) temporal behavior of the fs-amp OKG signal from the stepped part of the sample; (d), (e) time-resolved images of temporal behavior at the two peaks (A) and (B). The intensity distribution along line ab is also shown. The time difference between the two peaks is 0.5 ps, which is equivalent to 100 µm in depth.

Fig. 6
Fig. 6

(a) Sample with a stepped diffusing surface; (b) propagation of the diffused pulse; (c), (d) time-resolved images at times (A) and (B). The time difference between them is 0.76 ps, which is equivalent to 150 µm in depth. The collection efficiency of the diffused light is 0.1%. Integration of the CCD camera, 0.5 s, is performed to smooth the image, although the signal intensity is sufficient even with one shot of the pulse.

Fig. 7
Fig. 7

(a) Sample with a spherical diffusing surface, (b) successive differences of the time-resolved images at each incremental delay time of 0.67 ps, and (c) 3D shape of the spherical diffusing surface. The probe beam is incident at the base of the heart-shaped object. The collection efficiency of the diffused light is 0.01%. Integration of the CCD camera, 0.5 s, is performed to smooth the image, although the signal intensity is sufficient even with one shot of the pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C=Imax-IminImax+Imin,

Metrics