Abstract

A laser speckle correlator with high optical magnification is presented, and its performance in the measurement of strain is demonstrated experimentally. Two separated areas on a test specimen are illuminated with laser beams, and displacements of each area are measured by performance of laser speckle correlation on successive magnified images. The interplay of magnification, lens aperture, surface roughness, pixel spacing on the CCD array sensor, and the attainable precision of correlation are investigated theoretically and experimentally. Resolutions that are usually considered accessible only to interferometric techniques are achieved: displacement resolutions of less than 50 nm and strain measurements of less than 10 µstrain across distances of the order of 10 mm are demonstrated. At high magnification, speckle decorrelation due to out-of-plane displacement becomes a stringent restriction, and surface height correlation effects may limit speckle contrast and broaden speckle correlation peaks.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription