Abstract

Ultraweak photon emission phenomena in the visible to near-IR region, originating from biological organisms, are known. This biophoton emission is generated during metabolic processes and constitutes physiological information. We investigated a technique for characterizing the optical radiation field based on photon statistics and correlation analysis to extract information on regulation processes in biochemical reactions and their interactions. We developed the system based on the time-interval measurement of photoelectrons in a photon-counting region and employed data processing with a nonstationary optical field with correction for the correlative properties of the photomultiplier dark current. We analyzed biophoton emission from cellular slime mold (Dictyosterium discoideum) and observed the characteristic variation of this organism’s super-Poisson statistics during the developmental process.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, M. C. Teich, B. E. A. Saleh, “Photon bunching and antibunching,” in Progress in Optics, Vol. 26, E. Wolf, ed. (Elsevier Science, Amsterdam, 1988), pp. 1–104.
    [CrossRef]
  2. M. C. Teich, B. E. A. Saleh, “Observation of sub-Poisson Franck-Hertz light at 253.7 nm,” J. Opt. Soc. Am. B 2, 275–282 (1985).
    [CrossRef]
  3. *****For example, Special issue on biophoton, F.-A. Pop, ed., Experientia44, 543–600 (1988).
  4. H. Inaba, “New bio-information from ultraweak photon emission in life and biological activities: biophoton,” in Modern Radio Science 1990, J. B. Andersen, ed. (Oxford University, Oxford, 1990), p. 163 and references therein.
  5. E. Cadenas, A. Boveris, B. Chance, “Low-level chemiluminescence of biological systems,” in Free Radicals in Biology, Vol. 6, W. A. Pryor, ed. (Academic, Orlando, Fla., 1984), pp. 211–242.
  6. G. Matsumoto, H. Shimizu, J. Shimada, “Computer-based photoelectron counting system,” Rev. Sci. Instrum. 47, 861–865 (1976).
    [CrossRef]
  7. M. Kobayashi, B. Devaraj, H. Inaba, “Observation of super-Poisson statistics of bacterial (Photobacterium phosphoreum) bioluminescence during the early stage of cell proliferation,” Phys. Rev. E 57, 2129–2133 (1998).
    [CrossRef]
  8. P. B. Coates, “Noise sources in the C31000D photomultiplier,” J. Phys. E 4, 201–207 (1971).
    [CrossRef]
  9. A. T. Young, “Photometric error analysis. IX: Optimum use of photomultipliers,” Appl. Opt. 8, 2431–2447 (1969).
    [CrossRef] [PubMed]
  10. R. W. Engstrom, Photomultiplier Handbook (RCA Corporation, Lancaster, Pa., 1980).
  11. R. L. Jerde, L. E. Peterson, “Effects of high energy radiations on noise pulses from photomultiplier tubes,” Rev. Sci. Instrum. 38, 1387–1394 (1967).
    [CrossRef]
  12. S. Osuga, “Luminescence phenomenon on photomultiplier tube,” Kogaku 22, 410–411 (1993) (in Japanese).
  13. F. T. Arecchi, E. Gatti, A. Sona, “Time distribution of photons from coherent and Gaussian sources,” Phys. Lett. 20, 27–29 (1966).
    [CrossRef]
  14. M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).
  15. M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
    [CrossRef]
  16. P. R. Fisher, P. Karampetsos, Z. Wilczynska, L. T. Rosenberg, “Oxidative metabolism and heat shock-enhanced chemiluminescence in Dictyostelium discoideum,” J. Cell Sci. 99, 741–750 (1991).
  17. P. R. Fisher, L. T. Rosenberg, “Chemiluminescence in Dictyostelium discoideum,” FEMS Microbiol. Lett. 50, 157–161 (1988).
    [CrossRef]
  18. M. C. Teich, B. E. A. Saleh, “Fluctuation properties of multiplied-Poisson light: Measurement of the photon-counting distribution for radioluminescence radiation from glass,” Phys. Rev. A 24, 1651–1654 (1981).
    [CrossRef]
  19. B. E. A. Saleh, D. Stoler, M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
    [CrossRef]
  20. A. B. Cubitt, R. A. Firtel, G. Fischer, L. F. Jaffe, A. L. Miller, “Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin,” Development 121, 2291–2301 (1995).
    [PubMed]
  21. Y. Tanaka, R. Itakura, A. Amagai, Y. Maeda, “The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells,” Exp. Cell Res. 240, 340–348 (1998).
    [CrossRef] [PubMed]
  22. L. F. Jaffe, R. Creton, “On the conservation of calcium wave speeds,” Cell Calcium 24, 1–8 (1998).
    [CrossRef] [PubMed]

1998 (3)

Y. Tanaka, R. Itakura, A. Amagai, Y. Maeda, “The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells,” Exp. Cell Res. 240, 340–348 (1998).
[CrossRef] [PubMed]

L. F. Jaffe, R. Creton, “On the conservation of calcium wave speeds,” Cell Calcium 24, 1–8 (1998).
[CrossRef] [PubMed]

M. Kobayashi, B. Devaraj, H. Inaba, “Observation of super-Poisson statistics of bacterial (Photobacterium phosphoreum) bioluminescence during the early stage of cell proliferation,” Phys. Rev. E 57, 2129–2133 (1998).
[CrossRef]

1997 (1)

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
[CrossRef]

1996 (1)

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).

1995 (1)

A. B. Cubitt, R. A. Firtel, G. Fischer, L. F. Jaffe, A. L. Miller, “Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin,” Development 121, 2291–2301 (1995).
[PubMed]

1993 (1)

S. Osuga, “Luminescence phenomenon on photomultiplier tube,” Kogaku 22, 410–411 (1993) (in Japanese).

1991 (1)

P. R. Fisher, P. Karampetsos, Z. Wilczynska, L. T. Rosenberg, “Oxidative metabolism and heat shock-enhanced chemiluminescence in Dictyostelium discoideum,” J. Cell Sci. 99, 741–750 (1991).

1988 (1)

P. R. Fisher, L. T. Rosenberg, “Chemiluminescence in Dictyostelium discoideum,” FEMS Microbiol. Lett. 50, 157–161 (1988).
[CrossRef]

1985 (1)

1983 (1)

B. E. A. Saleh, D. Stoler, M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[CrossRef]

1981 (1)

M. C. Teich, B. E. A. Saleh, “Fluctuation properties of multiplied-Poisson light: Measurement of the photon-counting distribution for radioluminescence radiation from glass,” Phys. Rev. A 24, 1651–1654 (1981).
[CrossRef]

1976 (1)

G. Matsumoto, H. Shimizu, J. Shimada, “Computer-based photoelectron counting system,” Rev. Sci. Instrum. 47, 861–865 (1976).
[CrossRef]

1971 (1)

P. B. Coates, “Noise sources in the C31000D photomultiplier,” J. Phys. E 4, 201–207 (1971).
[CrossRef]

1969 (1)

1967 (1)

R. L. Jerde, L. E. Peterson, “Effects of high energy radiations on noise pulses from photomultiplier tubes,” Rev. Sci. Instrum. 38, 1387–1394 (1967).
[CrossRef]

1966 (1)

F. T. Arecchi, E. Gatti, A. Sona, “Time distribution of photons from coherent and Gaussian sources,” Phys. Lett. 20, 27–29 (1966).
[CrossRef]

Amagai, A.

Y. Tanaka, R. Itakura, A. Amagai, Y. Maeda, “The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells,” Exp. Cell Res. 240, 340–348 (1998).
[CrossRef] [PubMed]

Arecchi, F. T.

F. T. Arecchi, E. Gatti, A. Sona, “Time distribution of photons from coherent and Gaussian sources,” Phys. Lett. 20, 27–29 (1966).
[CrossRef]

Boveris, A.

E. Cadenas, A. Boveris, B. Chance, “Low-level chemiluminescence of biological systems,” in Free Radicals in Biology, Vol. 6, W. A. Pryor, ed. (Academic, Orlando, Fla., 1984), pp. 211–242.

Cadenas, E.

E. Cadenas, A. Boveris, B. Chance, “Low-level chemiluminescence of biological systems,” in Free Radicals in Biology, Vol. 6, W. A. Pryor, ed. (Academic, Orlando, Fla., 1984), pp. 211–242.

Chance, B.

E. Cadenas, A. Boveris, B. Chance, “Low-level chemiluminescence of biological systems,” in Free Radicals in Biology, Vol. 6, W. A. Pryor, ed. (Academic, Orlando, Fla., 1984), pp. 211–242.

Coates, P. B.

P. B. Coates, “Noise sources in the C31000D photomultiplier,” J. Phys. E 4, 201–207 (1971).
[CrossRef]

Creton, R.

L. F. Jaffe, R. Creton, “On the conservation of calcium wave speeds,” Cell Calcium 24, 1–8 (1998).
[CrossRef] [PubMed]

Cubitt, A. B.

A. B. Cubitt, R. A. Firtel, G. Fischer, L. F. Jaffe, A. L. Miller, “Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin,” Development 121, 2291–2301 (1995).
[PubMed]

Devaraj, B.

M. Kobayashi, B. Devaraj, H. Inaba, “Observation of super-Poisson statistics of bacterial (Photobacterium phosphoreum) bioluminescence during the early stage of cell proliferation,” Phys. Rev. E 57, 2129–2133 (1998).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).

Engstrom, R. W.

R. W. Engstrom, Photomultiplier Handbook (RCA Corporation, Lancaster, Pa., 1980).

Firtel, R. A.

A. B. Cubitt, R. A. Firtel, G. Fischer, L. F. Jaffe, A. L. Miller, “Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin,” Development 121, 2291–2301 (1995).
[PubMed]

Fischer, G.

A. B. Cubitt, R. A. Firtel, G. Fischer, L. F. Jaffe, A. L. Miller, “Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin,” Development 121, 2291–2301 (1995).
[PubMed]

Fisher, P. R.

P. R. Fisher, P. Karampetsos, Z. Wilczynska, L. T. Rosenberg, “Oxidative metabolism and heat shock-enhanced chemiluminescence in Dictyostelium discoideum,” J. Cell Sci. 99, 741–750 (1991).

P. R. Fisher, L. T. Rosenberg, “Chemiluminescence in Dictyostelium discoideum,” FEMS Microbiol. Lett. 50, 157–161 (1988).
[CrossRef]

Gatti, E.

F. T. Arecchi, E. Gatti, A. Sona, “Time distribution of photons from coherent and Gaussian sources,” Phys. Lett. 20, 27–29 (1966).
[CrossRef]

Inaba, H.

M. Kobayashi, B. Devaraj, H. Inaba, “Observation of super-Poisson statistics of bacterial (Photobacterium phosphoreum) bioluminescence during the early stage of cell proliferation,” Phys. Rev. E 57, 2129–2133 (1998).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).

H. Inaba, “New bio-information from ultraweak photon emission in life and biological activities: biophoton,” in Modern Radio Science 1990, J. B. Andersen, ed. (Oxford University, Oxford, 1990), p. 163 and references therein.

Itakura, R.

Y. Tanaka, R. Itakura, A. Amagai, Y. Maeda, “The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells,” Exp. Cell Res. 240, 340–348 (1998).
[CrossRef] [PubMed]

Jaffe, L. F.

L. F. Jaffe, R. Creton, “On the conservation of calcium wave speeds,” Cell Calcium 24, 1–8 (1998).
[CrossRef] [PubMed]

A. B. Cubitt, R. A. Firtel, G. Fischer, L. F. Jaffe, A. L. Miller, “Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin,” Development 121, 2291–2301 (1995).
[PubMed]

Jerde, R. L.

R. L. Jerde, L. E. Peterson, “Effects of high energy radiations on noise pulses from photomultiplier tubes,” Rev. Sci. Instrum. 38, 1387–1394 (1967).
[CrossRef]

Karampetsos, P.

P. R. Fisher, P. Karampetsos, Z. Wilczynska, L. T. Rosenberg, “Oxidative metabolism and heat shock-enhanced chemiluminescence in Dictyostelium discoideum,” J. Cell Sci. 99, 741–750 (1991).

Kobayashi, M.

M. Kobayashi, B. Devaraj, H. Inaba, “Observation of super-Poisson statistics of bacterial (Photobacterium phosphoreum) bioluminescence during the early stage of cell proliferation,” Phys. Rev. E 57, 2129–2133 (1998).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).

Maeda, Y.

Y. Tanaka, R. Itakura, A. Amagai, Y. Maeda, “The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells,” Exp. Cell Res. 240, 340–348 (1998).
[CrossRef] [PubMed]

Matsumoto, G.

G. Matsumoto, H. Shimizu, J. Shimada, “Computer-based photoelectron counting system,” Rev. Sci. Instrum. 47, 861–865 (1976).
[CrossRef]

Miller, A. L.

A. B. Cubitt, R. A. Firtel, G. Fischer, L. F. Jaffe, A. L. Miller, “Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin,” Development 121, 2291–2301 (1995).
[PubMed]

Osuga, S.

S. Osuga, “Luminescence phenomenon on photomultiplier tube,” Kogaku 22, 410–411 (1993) (in Japanese).

Peterson, L. E.

R. L. Jerde, L. E. Peterson, “Effects of high energy radiations on noise pulses from photomultiplier tubes,” Rev. Sci. Instrum. 38, 1387–1394 (1967).
[CrossRef]

Rosenberg, L. T.

P. R. Fisher, P. Karampetsos, Z. Wilczynska, L. T. Rosenberg, “Oxidative metabolism and heat shock-enhanced chemiluminescence in Dictyostelium discoideum,” J. Cell Sci. 99, 741–750 (1991).

P. R. Fisher, L. T. Rosenberg, “Chemiluminescence in Dictyostelium discoideum,” FEMS Microbiol. Lett. 50, 157–161 (1988).
[CrossRef]

Saleh, B. E. A.

M. C. Teich, B. E. A. Saleh, “Observation of sub-Poisson Franck-Hertz light at 253.7 nm,” J. Opt. Soc. Am. B 2, 275–282 (1985).
[CrossRef]

B. E. A. Saleh, D. Stoler, M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[CrossRef]

M. C. Teich, B. E. A. Saleh, “Fluctuation properties of multiplied-Poisson light: Measurement of the photon-counting distribution for radioluminescence radiation from glass,” Phys. Rev. A 24, 1651–1654 (1981).
[CrossRef]

For example, M. C. Teich, B. E. A. Saleh, “Photon bunching and antibunching,” in Progress in Optics, Vol. 26, E. Wolf, ed. (Elsevier Science, Amsterdam, 1988), pp. 1–104.
[CrossRef]

Shimada, J.

G. Matsumoto, H. Shimizu, J. Shimada, “Computer-based photoelectron counting system,” Rev. Sci. Instrum. 47, 861–865 (1976).
[CrossRef]

Shimizu, H.

G. Matsumoto, H. Shimizu, J. Shimada, “Computer-based photoelectron counting system,” Rev. Sci. Instrum. 47, 861–865 (1976).
[CrossRef]

Sona, A.

F. T. Arecchi, E. Gatti, A. Sona, “Time distribution of photons from coherent and Gaussian sources,” Phys. Lett. 20, 27–29 (1966).
[CrossRef]

Stoler, D.

B. E. A. Saleh, D. Stoler, M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[CrossRef]

Takeda, M.

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).

Tanaka, Y.

Y. Tanaka, R. Itakura, A. Amagai, Y. Maeda, “The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells,” Exp. Cell Res. 240, 340–348 (1998).
[CrossRef] [PubMed]

Tanno, Y.

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).

Teich, M. C.

M. C. Teich, B. E. A. Saleh, “Observation of sub-Poisson Franck-Hertz light at 253.7 nm,” J. Opt. Soc. Am. B 2, 275–282 (1985).
[CrossRef]

B. E. A. Saleh, D. Stoler, M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[CrossRef]

M. C. Teich, B. E. A. Saleh, “Fluctuation properties of multiplied-Poisson light: Measurement of the photon-counting distribution for radioluminescence radiation from glass,” Phys. Rev. A 24, 1651–1654 (1981).
[CrossRef]

For example, M. C. Teich, B. E. A. Saleh, “Photon bunching and antibunching,” in Progress in Optics, Vol. 26, E. Wolf, ed. (Elsevier Science, Amsterdam, 1988), pp. 1–104.
[CrossRef]

Usa, M.

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
[CrossRef]

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).

Wilczynska, Z.

P. R. Fisher, P. Karampetsos, Z. Wilczynska, L. T. Rosenberg, “Oxidative metabolism and heat shock-enhanced chemiluminescence in Dictyostelium discoideum,” J. Cell Sci. 99, 741–750 (1991).

Young, A. T.

Appl. Opt. (1)

Cell Calcium (1)

L. F. Jaffe, R. Creton, “On the conservation of calcium wave speeds,” Cell Calcium 24, 1–8 (1998).
[CrossRef] [PubMed]

Development (1)

A. B. Cubitt, R. A. Firtel, G. Fischer, L. F. Jaffe, A. L. Miller, “Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaequorin,” Development 121, 2291–2301 (1995).
[PubMed]

Exp. Cell Res. (1)

Y. Tanaka, R. Itakura, A. Amagai, Y. Maeda, “The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells,” Exp. Cell Res. 240, 340–348 (1998).
[CrossRef] [PubMed]

FEMS Microbiol. Lett. (1)

P. R. Fisher, L. T. Rosenberg, “Chemiluminescence in Dictyostelium discoideum,” FEMS Microbiol. Lett. 50, 157–161 (1988).
[CrossRef]

Frontiers Med. Biol. Eng. (1)

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Development and applications of new technology for two-dimensional space-time characterization and correlation analysis of ultraweak biophoton information,” Frontiers Med. Biol. Eng. 7, 299–309 (1996).

J. Cell Sci. (1)

P. R. Fisher, P. Karampetsos, Z. Wilczynska, L. T. Rosenberg, “Oxidative metabolism and heat shock-enhanced chemiluminescence in Dictyostelium discoideum,” J. Cell Sci. 99, 741–750 (1991).

J. Opt. Soc. Am. B (1)

J. Phys. E (1)

P. B. Coates, “Noise sources in the C31000D photomultiplier,” J. Phys. E 4, 201–207 (1971).
[CrossRef]

Kogaku (1)

S. Osuga, “Luminescence phenomenon on photomultiplier tube,” Kogaku 22, 410–411 (1993) (in Japanese).

Photochem. Photobiol. (1)

M. Kobayashi, B. Devaraj, M. Usa, Y. Tanno, M. Takeda, H. Inaba, “Two-dimensional imaging of ultraweak photon emission from germinating soybean seedlings with a highly sensitive CCD camera,” Photochem. Photobiol. 65, 535–537 (1997).
[CrossRef]

Phys. Lett. (1)

F. T. Arecchi, E. Gatti, A. Sona, “Time distribution of photons from coherent and Gaussian sources,” Phys. Lett. 20, 27–29 (1966).
[CrossRef]

Phys. Rev. A (2)

M. C. Teich, B. E. A. Saleh, “Fluctuation properties of multiplied-Poisson light: Measurement of the photon-counting distribution for radioluminescence radiation from glass,” Phys. Rev. A 24, 1651–1654 (1981).
[CrossRef]

B. E. A. Saleh, D. Stoler, M. C. Teich, “Coherence and photon statistics for optical fields generated by Poisson random emissions,” Phys. Rev. A 27, 360–374 (1983).
[CrossRef]

Phys. Rev. E (1)

M. Kobayashi, B. Devaraj, H. Inaba, “Observation of super-Poisson statistics of bacterial (Photobacterium phosphoreum) bioluminescence during the early stage of cell proliferation,” Phys. Rev. E 57, 2129–2133 (1998).
[CrossRef]

Rev. Sci. Instrum. (2)

R. L. Jerde, L. E. Peterson, “Effects of high energy radiations on noise pulses from photomultiplier tubes,” Rev. Sci. Instrum. 38, 1387–1394 (1967).
[CrossRef]

G. Matsumoto, H. Shimizu, J. Shimada, “Computer-based photoelectron counting system,” Rev. Sci. Instrum. 47, 861–865 (1976).
[CrossRef]

Other (5)

*****For example, Special issue on biophoton, F.-A. Pop, ed., Experientia44, 543–600 (1988).

H. Inaba, “New bio-information from ultraweak photon emission in life and biological activities: biophoton,” in Modern Radio Science 1990, J. B. Andersen, ed. (Oxford University, Oxford, 1990), p. 163 and references therein.

E. Cadenas, A. Boveris, B. Chance, “Low-level chemiluminescence of biological systems,” in Free Radicals in Biology, Vol. 6, W. A. Pryor, ed. (Academic, Orlando, Fla., 1984), pp. 211–242.

R. W. Engstrom, Photomultiplier Handbook (RCA Corporation, Lancaster, Pa., 1980).

For example, M. C. Teich, B. E. A. Saleh, “Photon bunching and antibunching,” in Progress in Optics, Vol. 26, E. Wolf, ed. (Elsevier Science, Amsterdam, 1988), pp. 1–104.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Block diagram of the measurement system including a schematic illustration of the PMT housing.

Fig. 2
Fig. 2

Long-term stability of PMT (Model R1333) dark counts: (a) Example of the time course of dark counts measured for 16 days. (b) Power-spectral density of dark counts averaged among 10 individual measurements.

Fig. 3
Fig. 3

Correlation properties of PMT dark counts: (a) Example of the pulse-correlation function of the PMT dark current expressed by the equation of the photon-correlation function g (2)(τ) in the τ region from 1 µs to 100 ms. The result indicated with a time resolution of 1 µs is in the range of τ ≤ 1 ms, and that of 100 µs is in the range of τ > 1 ms. (b) Probability distributions of the dark count indicated in various conditions of observation time. (c) Dark-current correlation function in the τ region below 2 µs calculated with a τ resolution of 12.5 ns. The three curves indicate results from three distinct PMT’s of the same model (R1333).

Fig. 4
Fig. 4

Temperature characteristics of averaged dark counts and standard deviation of the PMT (Model R1333) calculated from 1000 sampling points.

Fig. 5
Fig. 5

Photoelectron correlation function obtained from coherent light calculated with a τ resolution of 12.5 ns under the condition that the incident photon count is much higher than the number of dark pulses. The detected photoelectron count is 4.76 × 103 counts/s (cps). Data correction for a dark pulse correlation is not applied.

Fig. 6
Fig. 6

Experimental evaluation of the dark-pulse correlation induced by cosmic rays or radioactive substances. (a) Block diagram of a setup for pulse elimination for 2 µs, triggered by the coincidence detection of two opposed PMT’s with a time resolution for coincidence of 50 ns. The distance between the photocathodes of the two PMT’s was 18 mm. (b) Pulse-correlation function of dark counts with pulse elimination triggered by coincidence detection (solid curve) and its comparison with the function obtained without elimination (dotted curve). (c) Block diagram of a setup for pulse elimination for 2 µs triggered by large amplitude pulses. Events of the large-amplitude pulse were obtained from the output channel of the discriminator, which provides the pulses that exceed the upper level of the discriminator of -1.0 V, corresponding to 10 times the single photoelectron peak. (d) Pulse-correlation function of dark counts with pulse elimination triggered by large-amplitude pulses (solid curve) and its comparison with the function obtained without elimination (dotted curve).

Fig. 7
Fig. 7

Evaluation of data correction to calculate the photoelectron correlation function, which is demonstrated by measurement of the Gaussian source obtained by randomization of laser light with a rotating ground glass. The moving velocity at the laser spot is 49.6 cm/s. The black curves are the corrected results, and the gray curves are the raw data before correction with a time resolution of 1 µs. The detected photoelectron counts are (a) 9.7 × 103 cps, (b) 1.0 × 103 cps, and (c) 4.5 × 102 cps. (c) The theoretical curves evaluated from the velocity are also indicated by dotted–dashed lines.

Fig. 8
Fig. 8

Typical example of temporal changes in the intensity of ultraweak biophoton emission of D. discoideum during development.

Fig. 9
Fig. 9

(a) Temporal increase in the biophoton emission intensity of D. discoideum after starvation. The dots show raw data calculated with an observation time of 10 s, and the solid curve shows the result of its moving average from Eq. (17) with j = 10. (b) Temporal variation of the Fano factor characteristics with observation time of biophoton emission from D. discoideum during the early stage of development, corresponding to the time range shown in Fig. 9(a). (c) Temporal variation of the Fano factor characteristics obtained from a LED that was driven to exhibit the same intensity time course as D. discoideum, as indicated by the solid curve of Fig. 9(a).

Fig. 10
Fig. 10

Two typical patterns of averaged Fano factor versus observation time characteristics after starvation obtained from five individual experiments: (a) average of three experiments; (b) average of two experiments. The Fano factor characteristics were extracted from each experimental result with a maximum in the Fano factor in the time region of 100–150 min after starvation. The solid curve indicates the theoretical curve based on Eq. (20). The error bars represent the standard error.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

g2τ=ItIt+τIt2=Pcτn,
Gs2τ=nstinsti+τ=μs2gs2τ,
Gd2τ=ndtindti+τ=μd2gd2τ,
G2τ=ntinti+τGs2τ+Gd2τ+2nstindti=μs2gs2τ+μd2gd2τ+2μsμd
g2τ=G2τμ2=μs2μ2 gs2τ+μd2μ2 gd2τ+2 μsμdμ2.
gs2τ=μ2μs2 g2τ-μd2μs2 gd2τ+2 μdμs=1+R2g2τ-R2gd2τ+2R,
μs=ns/T,
μd=nd/T,
μ=μs+μd,
Δn2=nT-μT2.
Δn2=Δns2+Δnd2.
FnT=Δn2-Δnd2μsT.
μst=nst, T/T=It,
μt=μst+μd.
Δn2=1TM0TMnt, T-μtT2dt.
FnT=Δn2-Δnd21TM0TM ItTdt.
Iti=1Tak=i-j/2i+j/2 ntk, Ta-μd.
FnT=Δn2-Δnd21Ni=1NTTak=i-j/2i+j/2 ntk, Ta-μdT,
Δn2=1Ni=1Nnti, T-ItiT2=1Ni=1Nnti, T-TTak=i-j/2i+j/2 ntk, Ta+μdT2.
FnT=1+nM+α1MP+1Mm,

Metrics