To reduce the uncorrected higher-order aberrations for holographic gratings requiring an extreme dispersion, we have modified the Rowland mounting by moving the recording laser sources away from the grating. Then, with a multimode deformable plane mirror to record the grating, the correction of all the aberrations up to the fourth order inclusive is found sufficient to obtain a high-quality image. Applied to the FUSE-LYMAN grating, with a groove density of as much as 5740 grooves/mm, for which a resolution of 30,000 was required, this new recording device produces a resolution from 139,000 to 222,000 over the spectral range.

© 2000 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. M. Duban, “Theory of spherical holographic gratings recorded by use of a multimode deformable mirror,” Appl. Opt. 37, 7209–7213 (1998).
  2. M. Duban, K. Dohlen, G. R. Lemaı̂tre, “Illustration of the use of multimode deformable plane mirrors to record high-resolution concave gratings: results for the Cosmic Origin Spectrograph gratings of the Hubble Space Telescope,” Appl. Opt. 37, 7214–7217 (1998).
  3. M. Duban, “Theory and computation of three Cosmic Origin Spectrograph aspheric gratings recorded with a multimode deformable mirror,” Appl. Opt. 38, 1096–1102 (1999).
  4. G. Lemaı̂tre, M. Duban, “A general method of holographic grating recording with a null-powered multimode deformable mirror,” Astron. Astrophys. 339, L89–L93 (1998).
  5. M. Duban, “Holographic aspheric gratings printed with aberrant waves,” Appl. Opt. 26, 4263–4273 (1987).
    [Crossref] [PubMed]
  6. R. Grange, M. Laget, “Holographic diffraction gratings generated by aberrated wave fronts: application to a high-resolution far-ultraviolet spectrograph,” Appl. Opt. 30, 3598–3603 (1991).
    [Crossref] [PubMed]
  7. M. Duban, “Third-generation holographic Rowland mounting: fourth-order theory,” Appl. Opt. 38, 3443–3449 (1999).

1999 (2)

1998 (3)

1991 (1)

1987 (1)

Dohlen, K.

Duban, M.

Grange, R.

Laget, M.

Lemai^tre, G.

G. Lemaı̂tre, M. Duban, “A general method of holographic grating recording with a null-powered multimode deformable mirror,” Astron. Astrophys. 339, L89–L93 (1998).

Lemai^tre, G. R.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (4)

Fig. 1
Fig. 1

Geometry of the Rowland (recording sources C 1 and D 1) and the modified Rowland (recording sources C 2 and D 2) mountings.

Fig. 2
Fig. 2

Recording and working geometry for the FUSE-LYMAN grating in a modified Rowland mounting. L 1 and L 2 are the laser sources. PM is an auxiliary plane mirror, schematically introduced to shorten the overall dimensions of the recording device.

Fig. 3
Fig. 3

Spot diagram obtained for the FUSE-LYMAN grating at λ equal to 910, 929.1, 940, 970, 1000, 1011.2, and 1030 Å. (Isotropic scales).

Fig. 4
Fig. 4

Global and effective resolution dλ/λ versus λ for the FUSE-LYMAN grating.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

sin β0-sin α0=nλ0,
sin i tan i+sin r1 tan r1+kλ1/λ0Q=0,
sin i tan i+sin r2 tan r2+kλ2/λ0Q=0,
Q=sin α0 tan α0-sin β0 tan β0,
sin i+sin r=kλn.
cos2 α/c-cos α/R-cos2 β/d-cos β/R=0.
1/c-cos α/R-1/d-cos β/R=Q/R.
c=N/P sin2 β-Q cos2 β,  d=N/P sin2 α-Q cos2 α,
N=Rcos2 α-cos2 β,  P=cos α-cos β.
tan β or tan α=Q/P1/2.
C1=kλ/λ0sin α cos α cos α-c/R/2c2-sin β cos βcos β-d/R/2d2,
 R=1750 mm, n=5764 grooves/mm, recording laser wavelength λ0=3336 Å, working order k=1, spectral range of 9101030 Å, elliptical pupil of 170×135 mm, needed resolution of λ/dλ=30,000, abbreviated as 30 for simplicity.
α0=-72.7101°,  β0=75.4793°,
c=3014.0909 mm,  d=1271.4125 mm.
C1=-5.492×10-8,  C2=2.134×10-7, S1=-2.354×10-11, S2=1.538×10-10, S3=-3.081×10-11.
imir=9.4°,  dm=1020 mm,
A31=9.325×10-7,  A33=5.166×10-7, A40=-2.847×10-9,  A42=-3.477×10-9, A44=-5.345×10-10.
-48.4 μm at 910 Å,  -50.5 μm at 970 Å,  -64.4 μm at 1030 Å.