Abstract

We describe a high-performance Raman lidar system with combined day and night capability for tropospheric water-vapor profile measurements. The system incorporates high-performance UV interference filters and a narrow-band, dual-field-of-view receiver for rejection of background sunlight. Daytime performance has been demonstrated up to 5 km with 150-m vertical and 5-min temporal averaging. The nighttime performance is significantly better with measurements routinely extending from 10 to 12 km with 75-m range resolution and a 5-min temporal average. We describe design issues for daytime operation and a novel daytime calibration technique.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  2. J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
    [CrossRef]
  3. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).
  4. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
    [CrossRef]
  5. D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
    [CrossRef]
  6. D. N. Whiteman, R. A. Ferrare, S. H. Melfi, K. D. Evans, “Solar blind Raman scattering measurements of water vapor using a KrF excimer laser,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 165–168.
  7. J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in 16th International Laser Radar Conference, NASA Conference Pub. 3158, Part 2 (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 667–670.
  8. S. E. Bisson, “Parametric study of an excimer-pumped, nitrogen Raman shifter for lidar applications,” Appl. Opt. 34, 3406–3412 (1995).
    [CrossRef] [PubMed]
  9. J. Goldhar, W. R. Rapoport, J. R. Murray, “An injection-locked unstable resonator rare-gas halide discharge laser of narrow linewidth and high spatial quality,” IEEE J. Quantum Electron. 16, 235–240 (1980).
    [CrossRef]
  10. Barr Associates, Inc., 2 Lyberty Way, Westford, Mass. 01886.
  11. DSP Technology, Inc., 48500 Kato Road, Fremont, Calif. 94538-7338.
  12. E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, (U.S. National Technical Information Service, Springfield, Va., 1975).
  13. E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  14. J. P. Thayer, N. B. Nielson, R. B. Kerr, J. Noto, “Rayleigh lidar observations during arctic summer conditions,” in Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, Inc., New York, 1996), pp. 686–690.
    [CrossRef]
  15. J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997).
    [CrossRef]
  16. A. F. Bais, “Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer,” Appl. Opt. 36, 5199–5204 (1997).
    [CrossRef] [PubMed]
  17. R. L. McKenzie, P. V. Johnston, M. Kotkamp, A. Bittar, J. D. Hamlin, “Solar ultraviolet spectroradiometry in New Zealand: instrumentation and sample results from 1990,” Appl. Opt. 31, 6501–6509 (1992).
    [CrossRef] [PubMed]
  18. H. W. Schrötter, H. W. Klöchner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 130–138.

1998 (1)

1997 (2)

J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

A. F. Bais, “Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer,” Appl. Opt. 36, 5199–5204 (1997).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

1992 (3)

1988 (1)

D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

1980 (1)

J. Goldhar, W. R. Rapoport, J. R. Murray, “An injection-locked unstable resonator rare-gas halide discharge laser of narrow linewidth and high spatial quality,” IEEE J. Quantum Electron. 16, 235–240 (1980).
[CrossRef]

Ansmann, A.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).

Bais, A. F.

Bisson, S. E.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

S. E. Bisson, “Parametric study of an excimer-pumped, nitrogen Raman shifter for lidar applications,” Appl. Opt. 34, 3406–3412 (1995).
[CrossRef] [PubMed]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Bittar, A.

Blair, F. H.

Capitini, R.

D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

Evans, K. D.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, R. A. Ferrare, S. H. Melfi, K. D. Evans, “Solar blind Raman scattering measurements of water vapor using a KrF excimer laser,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 165–168.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, (U.S. National Technical Information Service, Springfield, Va., 1975).

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Ferrare, R. A.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in 16th International Laser Radar Conference, NASA Conference Pub. 3158, Part 2 (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 667–670.

D. N. Whiteman, R. A. Ferrare, S. H. Melfi, K. D. Evans, “Solar blind Raman scattering measurements of water vapor using a KrF excimer laser,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 165–168.

Goldhar, J.

J. Goldhar, W. R. Rapoport, J. R. Murray, “An injection-locked unstable resonator rare-gas halide discharge laser of narrow linewidth and high spatial quality,” IEEE J. Quantum Electron. 16, 235–240 (1980).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in 16th International Laser Radar Conference, NASA Conference Pub. 3158, Part 2 (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 667–670.

Hamlin, J. D.

Heinselman, C. J.

J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Johnston, P. V.

Kerr, R. B.

J. P. Thayer, N. B. Nielson, R. B. Kerr, J. Noto, “Rayleigh lidar observations during arctic summer conditions,” in Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, Inc., New York, 1996), pp. 686–690.
[CrossRef]

Klöchner, H. W.

H. W. Schrötter, H. W. Klöchner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 130–138.

Kotkamp, M.

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).

McKenzie, R. L.

Melfi, S. H.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

D. N. Whiteman, R. A. Ferrare, S. H. Melfi, K. D. Evans, “Solar blind Raman scattering measurements of water vapor using a KrF excimer laser,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 165–168.

Michaelis, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).

Murray, J. R.

J. Goldhar, W. R. Rapoport, J. R. Murray, “An injection-locked unstable resonator rare-gas halide discharge laser of narrow linewidth and high spatial quality,” IEEE J. Quantum Electron. 16, 235–240 (1980).
[CrossRef]

Nielson, N. B.

J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

J. P. Thayer, N. B. Nielson, R. B. Kerr, J. Noto, “Rayleigh lidar observations during arctic summer conditions,” in Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, Inc., New York, 1996), pp. 686–690.
[CrossRef]

Noto, J.

J. P. Thayer, N. B. Nielson, R. B. Kerr, J. Noto, “Rayleigh lidar observations during arctic summer conditions,” in Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, Inc., New York, 1996), pp. 686–690.
[CrossRef]

Rapoport, W. R.

J. Goldhar, W. R. Rapoport, J. R. Murray, “An injection-locked unstable resonator rare-gas halide discharge laser of narrow linewidth and high spatial quality,” IEEE J. Quantum Electron. 16, 235–240 (1980).
[CrossRef]

Renaut, D.

D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).

Schrötter, H. W.

H. W. Schrötter, H. W. Klöchner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 130–138.

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, (U.S. National Technical Information Service, Springfield, Va., 1975).

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Sohn, J.

J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Thayer, J. P.

J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

J. P. Thayer, N. B. Nielson, R. B. Kerr, J. Noto, “Rayleigh lidar observations during arctic summer conditions,” in Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, Inc., New York, 1996), pp. 686–690.
[CrossRef]

Turner, D. D.

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).

Wandinger, U.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).

Warren, R. E.

J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Weitkamp, C.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).

Whiteman, D. N.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

D. N. Whiteman, R. A. Ferrare, S. H. Melfi, K. D. Evans, “Solar blind Raman scattering measurements of water vapor using a KrF excimer laser,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 165–168.

Appl. Opt. (5)

Appl. Phys. B (1)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 42, 1–11 (1992).

Bull. Am. Meteorol. Soc. (1)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Goldhar, W. R. Rapoport, J. R. Murray, “An injection-locked unstable resonator rare-gas halide discharge laser of narrow linewidth and high spatial quality,” IEEE J. Quantum Electron. 16, 235–240 (1980).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

D. Renaut, R. Capitini, “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

Opt. Eng. (1)

J. P. Thayer, N. B. Nielson, R. E. Warren, C. J. Heinselman, J. Sohn, “Rayleigh lidar system for middle atmospheric research in the arctic,” Opt. Eng. 36, 2045–2061 (1997).
[CrossRef]

Other (8)

H. W. Schrötter, H. W. Klöchner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 130–138.

D. N. Whiteman, R. A. Ferrare, S. H. Melfi, K. D. Evans, “Solar blind Raman scattering measurements of water vapor using a KrF excimer laser,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 165–168.

J. E. M. Goldsmith, R. A. Ferrare, “Performance modeling of daytime Raman lidar systems for profiling atmospheric water vapor,” in 16th International Laser Radar Conference, NASA Conference Pub. 3158, Part 2 (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 667–670.

Barr Associates, Inc., 2 Lyberty Way, Westford, Mass. 01886.

DSP Technology, Inc., 48500 Kato Road, Fremont, Calif. 94538-7338.

E. P. Shettle, R. W. Fenn, “Models of the atmospheric aerosols and their optical properties,” in AGARD Conference Proceedings No. 183, (U.S. National Technical Information Service, Springfield, Va., 1975).

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

J. P. Thayer, N. B. Nielson, R. B. Kerr, J. Noto, “Rayleigh lidar observations during arctic summer conditions,” in Proceedings of the 1996 International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics Engineers, Inc., New York, 1996), pp. 686–690.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of predicted nighttime performance for three different pulse energies and constant average power. The performance is relatively independent of pulse energy until the signal levels approach either the detector dark current or the background skylight levels (moonlight, city lights, etc.).

Fig. 2
Fig. 2

Comparison of daytime Raman lidar performance for three different pulse energies and fixed average power. In the daytime, a low repetition rate, high-pulse energy system is preferred.

Fig. 3
Fig. 3

Schematic of the Sandia Raman lidar system. Amp, amplifier; Osc, oscillator.

Fig. 4
Fig. 4

Spectrum of XeCl laser for seeded (locked) and unseeded (unlocked) operation. The actual laser bandwidth for seeded operation was much narrower than the spectrometer resolution.

Fig. 5
Fig. 5

Comparison of a daytime Raman lidar water-vapor profile measurement with a radiosonde. The lidar data are a 10-min average with 75-m vertical resolution.

Fig. 6
Fig. 6

False color daytime time–height water-vapor image acquired with the Sandia Raman lidar in Livermore, Calif., 1 February 1995. For this measurement the vertical resolution was 75 m and the temporal resolution was 5 min.

Tables (1)

Tables Icon

Table 1 Sandia Raman Lidar Specifications

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ncorr=Nmeas1-ρNmeas/T,
SH2O,N2z=kH2O,N2OH2O,N2zAtelescopeNH2O,N2zElaserz2×dσH2O,N2dΩθ=180 exp-0z αlaseraerz+αH2O,N2aerz+αlasermolz+αH2O,N2molz+kH2O,N2AtelescopeFOV IH2O,N2solar,
mixing ratiog/kg=calON2zSH2OzOH2OzSN2z exp-0z Δα dz,
cal=RMWkN2dσdΩN2kH2OdΩdΩH2O.
Δα=αN2aerz+αN2molz-αH2Oaerz-αH2Omolz,
SH2Obackground=kH2OAtelescopeFOV IH2Osolar,
SN2background=kN2AtelescopeFOV IN2solar,
kN2kH2O=SN2IH2OsolarSH2OIN2solar.

Metrics