Abstract

Laser radar (lidar) can be used to estimate atmospheric extinction coefficients that are due to aerosols if the ratio between optical extinction and 180° backscatter (the lidar ratio) at the laser wavelength is known or if Raman or high spectral resolution data are available. Most lidar instruments, however, do not have Raman or high spectral resolution capability, which makes knowledge of the lidar ratio essential. We have modified an integrating nephelometer, which measures the scattering component of light extinction, by addition of a backward-pointing laser light source such that the detected light corresponds to integrated scattering over 176–178° at a common lidar wavelength of 532 nm. Mie calculations indicate that the detected quantity is an excellent proxy for 180° backscatter. When combined with existing techniques for measuring total scattering and absorption by particles, the new device permits a direct determination of the lidar ratio. A four-point calibration, run by filling the enclosed sample volume with particle-free gases of a known scattering coefficient, indicates a linear response and calibration reproducibility to within 4%. The instrument has a detection limit of 1.5 × 10-7 m-1 sr-1 (∼10% of Rayleigh scattering by air at STP) for a 5-min average and is suitable for ground and mobile/airborne surveys. Initial field measurements yielded a lidar ratio of ∼20 for marine aerosols and ∼60–70 for continental aerosols, with an uncertainty of ∼20%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Seinfeld, R. J. Charlson, P. A. Durkee, D. Hegg, B. J. Huebert, J. Kiehl, M. P. McCormick, J. A. Ogren, J. E. Penner, V. Ramaswamy, W. G. Slinn, eds., Aerosol Radiative Forcing and Climate Change, National Research Council (National Academy Press, Washington, D.C., 1996).
  2. Instrument calibration relates detected photon counts to backscatter. Lidar calibration depends on factors such as pulse strength, detector gain, and system geometry (see Ref. 12).
  3. The lidar ratio is defined here such that K = 8π/3 for Rayleigh scattering.
  4. M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
    [CrossRef]
  5. B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
    [CrossRef]
  6. E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
    [CrossRef]
  7. E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994).
    [CrossRef]
  8. E. V. Browell, G. L. Gregory, R. C. Harriss, V. W. J. H. Kirchhoff, “Ozone and aerosol distributions over the Amazon Basin during the wet season,” J. Geophys. Res. 95, 16,887–16,901 (1990).
    [CrossRef]
  9. B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3305 (1988).
    [CrossRef] [PubMed]
  10. S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997).
    [CrossRef]
  11. P. B. Russell, B. M. Morley, “Orbiting lidar simulations. 2: Density, temperature, aerosol, and cloud measurements by a wavelength-combining technique,” Appl. Opt. 21, 1554–1563 (1982).
    [CrossRef] [PubMed]
  12. R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
    [CrossRef]
  13. T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
    [CrossRef]
  14. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  15. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef] [PubMed]
  16. T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1998).
    [CrossRef]
  17. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
    [CrossRef] [PubMed]
  18. J. M. Rosen, N. T. Kjome, “Backscattersonde: a new instrument for atmospheric aerosol research,” Appl. Opt. 30, 1552–1561 (1991).
    [CrossRef] [PubMed]
  19. J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Measurement of extinction-to-backscatter ratio for near-surface aerosols,” J. Geophys. Res. 102, 6017–6024 (1997).
    [CrossRef]
  20. J. M. Rosen, T. Kjome, J. B. Liley, “Tropospheric aerosol backscatter at a midlatitude site in the northern and southern hemispheres,” J. Geophys. Res. 102, 21,329–21,339 (1997).
    [CrossRef]
  21. J. M. Rosen, T. N. Kjome, “Balloon-borne measurements of the aerosol extinction-to-backscatter ratio,” J. Geophys. Res. 102, 11,165–11,169 (1997).
    [CrossRef]
  22. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  23. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Opt. Lett. 15, 746–748 (1990).
    [CrossRef] [PubMed]
  24. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef] [PubMed]
  25. A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, “Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass and surface area over center Europe at 53.4° N,” J. Atmos. Sci. 54, 2630–2641 (1997).
    [CrossRef]
  26. D. Muller, U. Wandinger, D. Althausen, I. Mattis, A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
    [CrossRef]
  27. P. von der Gathen, “Aerosol extinction and backscatter profiles by means of a multiwavelength Raman lidar: a new method without a priori assumptions,” Appl. Opt. 34, 463–466 (1995).
    [CrossRef] [PubMed]
  28. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
    [CrossRef]
  29. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
    [CrossRef]
  30. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  31. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
    [CrossRef] [PubMed]
  32. C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30(1) , 6–12 (1991).
    [CrossRef]
  33. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994).
    [CrossRef] [PubMed]
  34. T. Murayama, M. Furushima, A. Oda, N. Iwasaka, “Aerosol optical properties in the urban mixing layer studies by polarization lidar with meteorological data,” In Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, New York, 1997), pp. 19–22.
    [CrossRef]
  35. T. Takamura, Y. Sasano, “Aerosol optical properties inferred from simultaneous lidar, aerosol-counter and sunphotometer measurements,” J. Meteorol. Soc. Jpn. 68(6) , 731–739 (1990).
  36. T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
    [CrossRef] [PubMed]
  37. T. Hayasaka, Y. Meguro, Y. Sasano, T. Takamura, “Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter,” Appl. Opt. 37, 961–970 (1998).
    [CrossRef]
  38. H. Yoshiyama, A. Ohi, K. Ohta, “Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method,” Appl. Opt. 35, 2642–2648 (1996).
    [CrossRef] [PubMed]
  39. G. Pandithurai, P. C. S. Devara, P. E. Raj, S. Sharma, “Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer,” Remote Sensing Environ. 56, 87–96 (1996).
    [CrossRef]
  40. S. Yang, W. Cotton, T. Jensen, “Feasibility of retrieving aerosol concentration in the atmospheric boundary layer using multitime lidar returns and visual range,” J. Atmos. Oceanic Technol. 14, 1064–1078 (1997).
    [CrossRef]
  41. G. A. D’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  42. H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
    [CrossRef]
  43. S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
    [CrossRef]
  44. J. Zhang, H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997).
    [CrossRef] [PubMed]
  45. T. C. Bond, T. L. Anderson, D. Campbell, “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols,” Aerosol Sci. Technol. (to be published).

1998 (5)

T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
[CrossRef]

D. Muller, U. Wandinger, D. Althausen, I. Mattis, A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[CrossRef]

T. Hayasaka, Y. Meguro, Y. Sasano, T. Takamura, “Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter,” Appl. Opt. 37, 961–970 (1998).
[CrossRef]

1997 (8)

J. Zhang, H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997).
[CrossRef] [PubMed]

S. Yang, W. Cotton, T. Jensen, “Feasibility of retrieving aerosol concentration in the atmospheric boundary layer using multitime lidar returns and visual range,” J. Atmos. Oceanic Technol. 14, 1064–1078 (1997).
[CrossRef]

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, “Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass and surface area over center Europe at 53.4° N,” J. Atmos. Sci. 54, 2630–2641 (1997).
[CrossRef]

S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997).
[CrossRef]

J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Measurement of extinction-to-backscatter ratio for near-surface aerosols,” J. Geophys. Res. 102, 6017–6024 (1997).
[CrossRef]

J. M. Rosen, T. Kjome, J. B. Liley, “Tropospheric aerosol backscatter at a midlatitude site in the northern and southern hemispheres,” J. Geophys. Res. 102, 21,329–21,339 (1997).
[CrossRef]

J. M. Rosen, T. N. Kjome, “Balloon-borne measurements of the aerosol extinction-to-backscatter ratio,” J. Geophys. Res. 102, 11,165–11,169 (1997).
[CrossRef]

1996 (5)

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

G. Pandithurai, P. C. S. Devara, P. E. Raj, S. Sharma, “Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer,” Remote Sensing Environ. 56, 87–96 (1996).
[CrossRef]

H. Yoshiyama, A. Ohi, K. Ohta, “Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method,” Appl. Opt. 35, 2642–2648 (1996).
[CrossRef] [PubMed]

1995 (2)

1994 (3)

1993 (2)

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

1992 (3)

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

1991 (2)

C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30(1) , 6–12 (1991).
[CrossRef]

J. M. Rosen, N. T. Kjome, “Backscattersonde: a new instrument for atmospheric aerosol research,” Appl. Opt. 30, 1552–1561 (1991).
[CrossRef] [PubMed]

1990 (3)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Opt. Lett. 15, 746–748 (1990).
[CrossRef] [PubMed]

T. Takamura, Y. Sasano, “Aerosol optical properties inferred from simultaneous lidar, aerosol-counter and sunphotometer measurements,” J. Meteorol. Soc. Jpn. 68(6) , 731–739 (1990).

E. V. Browell, G. L. Gregory, R. C. Harriss, V. W. J. H. Kirchhoff, “Ozone and aerosol distributions over the Amazon Basin during the wet season,” J. Geophys. Res. 95, 16,887–16,901 (1990).
[CrossRef]

1988 (1)

1983 (2)

1982 (1)

1980 (1)

Ahlquist, N. A.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Althausen, D.

Anderson, B. E.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

Anderson, T. L.

T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1998).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

T. C. Bond, T. L. Anderson, D. Campbell, “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols,” Aerosol Sci. Technol. (to be published).

Ansmann, A.

Bagwell, D. R.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

Bates, T. S.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Blake, D. R.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

Blake, N. J.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

Bond, T. C.

T. C. Bond, T. L. Anderson, D. Campbell, “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols,” Aerosol Sci. Technol. (to be published).

Brook, J.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

Browell, E. V.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994).
[CrossRef]

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
[CrossRef]

E. V. Browell, G. L. Gregory, R. C. Harriss, V. W. J. H. Kirchhoff, “Ozone and aerosol distributions over the Amazon Basin during the wet season,” J. Geophys. Res. 95, 16,887–16,901 (1990).
[CrossRef]

Bucholtz, A.

Butler, C. F.

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994).
[CrossRef]

E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
[CrossRef]

Caldow, R.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Campbell, D.

T. C. Bond, T. L. Anderson, D. Campbell, “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols,” Aerosol Sci. Technol. (to be published).

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Charlson, R. J.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Coakley, J. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Collins, J. E.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

Cotton, W.

S. Yang, W. Cotton, T. Jensen, “Feasibility of retrieving aerosol concentration in the atmospheric boundary layer using multitime lidar returns and visual range,” J. Atmos. Oceanic Technol. 14, 1064–1078 (1997).
[CrossRef]

Covert, D. S.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Cutten, D. R.

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

D’Almeida, G. A.

G. A. D’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

Davies, J. E.

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

Devara, P. C. S.

G. Pandithurai, P. C. S. Devara, P. E. Raj, S. Sharma, “Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer,” Remote Sensing Environ. 56, 87–96 (1996).
[CrossRef]

Dusterdiek, T.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

Eloranta, E. W.

Evans, B. T. N.

Evans, K. D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
[CrossRef]

Fenn, M. A.

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994).
[CrossRef]

E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
[CrossRef]

Ferrare, R. A.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
[CrossRef]

Furushima, M.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, “Aerosol optical properties in the urban mixing layer studies by polarization lidar with meteorological data,” In Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, New York, 1997), pp. 19–22.
[CrossRef]

Gardner, C. S.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Garvey, D. M.

J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Measurement of extinction-to-backscatter ratio for near-surface aerosols,” J. Geophys. Res. 102, 6017–6024 (1997).
[CrossRef]

Georgi, B.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

Grant, W. B.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994).
[CrossRef]

Gregory, G. L.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
[CrossRef]

E. V. Browell, G. L. Gregory, R. C. Harriss, V. W. J. H. Kirchhoff, “Ozone and aerosol distributions over the Amazon Basin during the wet season,” J. Geophys. Res. 95, 16,887–16,901 (1990).
[CrossRef]

Grund, C. J.

C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30(1) , 6–12 (1991).
[CrossRef]

Guise-Bagley, L.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

Harriss, R. C.

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994).
[CrossRef]

E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
[CrossRef]

E. V. Browell, G. L. Gregory, R. C. Harriss, V. W. J. H. Kirchhoff, “Ozone and aerosol distributions over the Amazon Basin during the wet season,” J. Geophys. Res. 95, 16,887–16,901 (1990).
[CrossRef]

Hayasaka, T.

Herrmann, H.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Hoff, R. M.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Holm, R.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Hu, H.

Hudgins, C. H.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

Iwasaka, N.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, “Aerosol optical properties in the urban mixing layer studies by polarization lidar with meteorological data,” In Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, New York, 1997), pp. 19–22.
[CrossRef]

Iwasaka, Y.

S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997).
[CrossRef]

Jensen, T.

S. Yang, W. Cotton, T. Jensen, “Feasibility of retrieving aerosol concentration in the atmospheric boundary layer using multitime lidar returns and visual range,” J. Atmos. Oceanic Technol. 14, 1064–1078 (1997).
[CrossRef]

Jorgensen, H. E.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Kaufman, Y. J.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
[CrossRef]

Kent, G. S.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Kirchhoff, V. W. J. H.

E. V. Browell, G. L. Gregory, R. C. Harriss, V. W. J. H. Kirchhoff, “Ozone and aerosol distributions over the Amazon Basin during the wet season,” J. Geophys. Res. 95, 16,887–16,901 (1990).
[CrossRef]

Kjome, N. T.

Kjome, T.

J. M. Rosen, T. Kjome, J. B. Liley, “Tropospheric aerosol backscatter at a midlatitude site in the northern and southern hemispheres,” J. Geophys. Res. 102, 21,329–21,339 (1997).
[CrossRef]

Kjome, T. N.

J. M. Rosen, T. N. Kjome, “Balloon-borne measurements of the aerosol extinction-to-backscatter ratio,” J. Geophys. Res. 102, 11,165–11,169 (1997).
[CrossRef]

Koepke, P.

G. A. D’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

Kooi, S. A.

E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
[CrossRef]

Kwon, S. A.

S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997).
[CrossRef]

Lahmann, W.

Laucks, M. L.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Leifer, R.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
[CrossRef]

Liley, J. B.

J. M. Rosen, T. Kjome, J. B. Liley, “Tropospheric aerosol backscatter at a midlatitude site in the northern and southern hemispheres,” J. Geophys. Res. 102, 21,329–21,339 (1997).
[CrossRef]

Lyck, E.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Lynch, M. J.

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

Marshall, S. F.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Mattis, I.

D. Muller, U. Wandinger, D. Althausen, I. Mattis, A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[CrossRef]

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, “Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass and surface area over center Europe at 53.4° N,” J. Atmos. Sci. 54, 2630–2641 (1997).
[CrossRef]

McCormick, M. P.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Meguro, Y.

Melfi, S. H.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
[CrossRef]

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Menzies, R. T.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Michaelis, W.

Mikkelsen, T.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Morley, B. M.

Muller, D.

Murayama, T.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, “Aerosol optical properties in the urban mixing layer studies by polarization lidar with meteorological data,” In Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, New York, 1997), pp. 19–22.
[CrossRef]

Oda, A.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, “Aerosol optical properties in the urban mixing layer studies by polarization lidar with meteorological data,” In Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, New York, 1997), pp. 19–22.
[CrossRef]

Ogren, J. A.

T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1998).
[CrossRef]

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Ohi, A.

Ohta, K.

Pandithurai, G.

G. Pandithurai, P. C. S. Devara, P. E. Raj, S. Sharma, “Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer,” Remote Sensing Environ. 56, 87–96 (1996).
[CrossRef]

Piironen, P.

Pinnick, R. G.

J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Measurement of extinction-to-backscatter ratio for near-surface aerosols,” J. Geophys. Res. 102, 6017–6024 (1997).
[CrossRef]

Platt, C. M. R.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Poellot, M.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
[CrossRef]

Quant, F.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Raj, P. E.

G. Pandithurai, P. C. S. Devara, P. E. Raj, S. Sharma, “Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer,” Remote Sensing Environ. 56, 87–96 (1996).
[CrossRef]

Randall, D. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Reagan, J. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Riebesell, M.

Roesler, F. L.

Rosen, J. M.

J. M. Rosen, T. N. Kjome, “Balloon-borne measurements of the aerosol extinction-to-backscatter ratio,” J. Geophys. Res. 102, 11,165–11,169 (1997).
[CrossRef]

J. M. Rosen, T. Kjome, J. B. Liley, “Tropospheric aerosol backscatter at a midlatitude site in the northern and southern hemispheres,” J. Geophys. Res. 102, 21,329–21,339 (1997).
[CrossRef]

J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Measurement of extinction-to-backscatter ratio for near-surface aerosols,” J. Geophys. Res. 102, 6017–6024 (1997).
[CrossRef]

J. M. Rosen, N. T. Kjome, “Backscattersonde: a new instrument for atmospheric aerosol research,” Appl. Opt. 30, 1552–1561 (1991).
[CrossRef] [PubMed]

Russell, P. B.

Sachse, G. W.

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

Sakai, T.

S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997).
[CrossRef]

Sasano, Y.

Sem, G.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Sharma, S.

G. Pandithurai, P. C. S. Devara, P. E. Raj, S. Sharma, “Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer,” Remote Sensing Environ. 56, 87–96 (1996).
[CrossRef]

Shettle, E. P.

G. A. D’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

Shibata, T.

S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997).
[CrossRef]

Shipham, M. C.

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994).
[CrossRef]

Shipley, S. T.

Sroga, J. T.

Staebler, R. M.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

Streicher, J.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Takamura, T.

Tracy, D. H.

Trauger, J. T.

Tryon, P. J.

von der Gathen, P.

Voss, E.

Waggoner, A. P.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Wagner, F.

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, “Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass and surface area over center Europe at 53.4° N,” J. Atmos. Sci. 54, 2630–2641 (1997).
[CrossRef]

Wandinger, U.

Weinman, J. A.

Weitkamp, C.

Werner, C.

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

Whiteman, D. N.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
[CrossRef]

Wiebe, H. A.

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

Wiedensohler, A.

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

Winker, D. M.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Yang, S.

S. Yang, W. Cotton, T. Jensen, “Feasibility of retrieving aerosol concentration in the atmospheric boundary layer using multitime lidar returns and visual range,” J. Atmos. Oceanic Technol. 14, 1064–1078 (1997).
[CrossRef]

Yoshiyama, H.

Young, A. T.

Young, S. A.

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

Zhang, J.

Aerosol Sci. Technol. (1)

T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1998).
[CrossRef]

Appl. Opt. (14)

P. B. Russell, B. M. Morley, “Orbiting lidar simulations. 2: Density, temperature, aerosol, and cloud measurements by a wavelength-combining technique,” Appl. Opt. 21, 1554–1563 (1982).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
[CrossRef] [PubMed]

B. T. N. Evans, “Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar,” Appl. Opt. 27, 3299–3305 (1988).
[CrossRef] [PubMed]

J. M. Rosen, N. T. Kjome, “Backscattersonde: a new instrument for atmospheric aerosol research,” Appl. Opt. 30, 1552–1561 (1991).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

T. Takamura, Y. Sasano, T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
[CrossRef] [PubMed]

J. Zhang, H. Hu, “Lidar calibration: a new method,” Appl. Opt. 36, 1235–1238 (1997).
[CrossRef] [PubMed]

D. Muller, U. Wandinger, D. Althausen, I. Mattis, A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths,” Appl. Opt. 37, 2260–2263 (1998).
[CrossRef]

P. von der Gathen, “Aerosol extinction and backscatter profiles by means of a multiwavelength Raman lidar: a new method without a priori assumptions,” Appl. Opt. 34, 463–466 (1995).
[CrossRef] [PubMed]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef] [PubMed]

H. Yoshiyama, A. Ohi, K. Ohta, “Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method,” Appl. Opt. 35, 2642–2648 (1996).
[CrossRef] [PubMed]

T. Hayasaka, Y. Meguro, Y. Sasano, T. Takamura, “Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter,” Appl. Opt. 37, 961–970 (1998).
[CrossRef]

A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
[CrossRef] [PubMed]

Appl. Phys. B (2)

H. E. Jorgensen, T. Mikkelsen, J. Streicher, H. Herrmann, C. Werner, E. Lyck, “Lidar calibration experiments,” Appl. Phys. B 64, 355–361 (1997).
[CrossRef]

A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Atmos. Environ. (2)

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in Southern Hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

S. A. Kwon, Y. Iwasaka, T. Shibata, T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: lidar measurement in spring and summer in Nagoya, Japan,” Atmos. Environ. 31, 1459–1465 (1997).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
[CrossRef]

S. Yang, W. Cotton, T. Jensen, “Feasibility of retrieving aerosol concentration in the atmospheric boundary layer using multitime lidar returns and visual range,” J. Atmos. Oceanic Technol. 14, 1064–1078 (1997).
[CrossRef]

J. Atmos. Sci. (1)

A. Ansmann, I. Mattis, U. Wandinger, F. Wagner, “Evolution of the Pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass and surface area over center Europe at 53.4° N,” J. Atmos. Sci. 54, 2630–2641 (1997).
[CrossRef]

J. Geophys. Res. (10)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons,” J. Geophys. Res. 103, 19,663–19,672 (1998).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103(D16) , 19,673–19,689 (1998).
[CrossRef]

J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Measurement of extinction-to-backscatter ratio for near-surface aerosols,” J. Geophys. Res. 102, 6017–6024 (1997).
[CrossRef]

J. M. Rosen, T. Kjome, J. B. Liley, “Tropospheric aerosol backscatter at a midlatitude site in the northern and southern hemispheres,” J. Geophys. Res. 102, 21,329–21,339 (1997).
[CrossRef]

J. M. Rosen, T. N. Kjome, “Balloon-borne measurements of the aerosol extinction-to-backscatter ratio,” J. Geophys. Res. 102, 11,165–11,169 (1997).
[CrossRef]

B. E. Anderson, W. B. Grant, G. L. Gregory, E. V. Browell, J. E. Collins, G. W. Sachse, D. R. Bagwell, C. H. Hudgins, D. R. Blake, N. J. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: distributions and impacts,” J. Geophys. Res. 101, 24,117–24,137 (1996).
[CrossRef]

E. V. Browell, C. F. Butler, S. A. Kooi, M. A. Fenn, R. C. Harriss, G. L. Gregory, “Large-scale variability of ozone and aerosols in the summertime Arctic and Sub-Arctic troposphere,” J. Geophys. Res. 97, 16,433–16,450 (1992).
[CrossRef]

E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994).
[CrossRef]

E. V. Browell, G. L. Gregory, R. C. Harriss, V. W. J. H. Kirchhoff, “Ozone and aerosol distributions over the Amazon Basin during the wet season,” J. Geophys. Res. 95, 16,887–16,901 (1990).
[CrossRef]

R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, T. Dusterdiek, “Lidar, nephelometer, and in situ aerosol experiments in southern Ontario,” J. Geophys. Res. 101(D14) , 19,199–19,209 (1996).
[CrossRef]

J. Meteorol. Soc. Jpn. (1)

T. Takamura, Y. Sasano, “Aerosol optical properties inferred from simultaneous lidar, aerosol-counter and sunphotometer measurements,” J. Meteorol. Soc. Jpn. 68(6) , 731–739 (1990).

Opt. Eng. (1)

C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30(1) , 6–12 (1991).
[CrossRef]

Opt. Lett. (2)

Remote Sensing Environ. (1)

G. Pandithurai, P. C. S. Devara, P. E. Raj, S. Sharma, “Aerosol size distribution and refractive index from bistatic lidar angular scattering measurements in the surface layer,” Remote Sensing Environ. 56, 87–96 (1996).
[CrossRef]

Other (7)

G. A. D’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

T. C. Bond, T. L. Anderson, D. Campbell, “Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols,” Aerosol Sci. Technol. (to be published).

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, “Aerosol optical properties in the urban mixing layer studies by polarization lidar with meteorological data,” In Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, New York, 1997), pp. 19–22.
[CrossRef]

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

J. H. Seinfeld, R. J. Charlson, P. A. Durkee, D. Hegg, B. J. Huebert, J. Kiehl, M. P. McCormick, J. A. Ogren, J. E. Penner, V. Ramaswamy, W. G. Slinn, eds., Aerosol Radiative Forcing and Climate Change, National Research Council (National Academy Press, Washington, D.C., 1996).

Instrument calibration relates detected photon counts to backscatter. Lidar calibration depends on factors such as pulse strength, detector gain, and system geometry (see Ref. 12).

The lidar ratio is defined here such that K = 8π/3 for Rayleigh scattering.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of the 180° backscatter nephelometer (vertical scale greatly exaggerated). A laser light source (A) produces a beam with a 1/e 2 diameter of 0.6 mm. The beam is spatially filtered (B and C) through a pair of apertures and folded (D) into the nephelometer cavity through an antireflection-coated window (E). The beam enters the nephelometer perpendicular to the view volume optical axis at the baffle (L) housing the nephelometer reference chopper (K). This baffle establishes one end of the scattering volume. A coated glass window (F) mounted on the baffle reflects ∼1% of the laser light up to G (see Fig. 2) for use as a reference beam. A small prism with a mirror coating on the hypotenuse and flat black coating on all other sides (H) folds the remaining 99% of the beam at a 2.5° angle to the nephelometer optical axis (dashed line). The prism size was minimized so that the beam could be folded as close to the detector field of view as possible. The angular field of view of the detector is 1.0°. The intersection of the light source with this field of view defines the sensing volume. With the present geometry, light scattered within the sensing volume at angles between 176.4° and 178.4° is detected. The laser beam leaves the detector field of view at baffle M, restricting the sensing volume to the region between the aerosol inlet and outlet. The beam terminates at a light dump (J). Baffles M and N shield any light reflected off the black glass light dump from reaching the detectors. All the surfaces inside the nephelometer, other than active optical surfaces, are coated with black optical paint to minimize stray light scatter.

Fig. 2
Fig. 2

Variations in the laser intensity and PMT sensitivity are accounted for by monitoring continuously the intensity of a calibration reference beam. As noted above, ∼1% of the beam entering the nephelometer volume is split off with an antireflection-coated window (F) and forms the reference beam. The reference beam is directed at a white disk (G), creating a diffuse light source. The disk is located outside the detector field of view such that the diffusely scattered light does not directly reach the detector when the reference chopper is in the open (measure) position. (a) The diffuse light strikes baffles and walls coated with black optical paint and is largely absorbed. (b) When the reference chopper is in the calibrate position, some of the diffuse light strikes a neutral-density coated glass surface, transmitting some of the light to the detector. Variations in laser intensity are manifested as changes in the calibrate photon counts C cal, which are used to calculate the system signal as described in the text.

Fig. 3
Fig. 3

Scattering integral of 176°–178° measured by the 180° nephelometer is an excellent proxy for 180° backscatter. Accuracies are ±2% for the accumulation mode and ±10% for the coarse mode based on Mie calculations for log-normal particle size distributions as shown above. Test cases used geometric standard deviations ranging from 1.6 to 2.2 and real refractive indices ranging from 1.36 to 1.52. (a) For the accumulation mode, volume mean diameter D gv ranged from 0.2 to 0.6 µm, and single-scattering albedo ω0 ranged from 0.77 to 1.0. (b) For the coarse mode, D gv ranged from 1.0 to 5.0 and ω0 from 0.85 to 1.0 to represent mass dominated by sea salt or mineral dust.

Fig. 4
Fig. 4

Gas calibration results for a four-point calibration of the 180° nephelometer. Two measurements were made at 0.5 atm and one at 1.0 atm for both air and CO2.

Fig. 5
Fig. 5

Optical properties of continental aerosol measured on 5 March 1998 GMT (day 64) at CPO.

Fig. 6
Fig. 6

Optical properties of marine aerosol measured on 16 March 1998 GMT (day 75) at CPO.

Tables (4)

Tables Icon

Table 1 Sensitivity of Aerosol Optical Depth to Lidar Ratioa

Tables Icon

Table 2 Aerosol Optical Properties at 532 nm Measured at CPO, Spring 1998, Case 1a

Tables Icon

Table 3 Aerosol Optical Properties at 532 nm Measured at CPO, Spring 1998, Case 2a

Tables Icon

Table 4 Aerosol Optical Properties at 532 nm Measured at CPO, Spring 1998, Case 3a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Sz=Aβzexp-2zLz σezdz=Aβzexp-2τzL, z,
Ksr=σepβp=σsp+σapβp,
βp=k2C-Cwall-βairT, P,
C=Cmeas-CdarkCcal-Cdark.
βgasλ=σsgSTP, λ38π1+γ(1+2γ)273.2TP1013.2,
k2=βCO2-βairCCO2-Cair, Cwall=Cair-βairk2.
Åλ1/λ2=-logσspλ1/σspλ2logλ1/λ2.

Metrics