Abstract

We describe tunable 5–12-µm mid-infrared generation in single-crystal silver gallium sulfide (AgGaS2), from nonlinear optical difference-frequency generation. Signal and idler waves obtained from a Nd:YAG laser–pumped LiNbO3 optical parametric oscillator (OPO) were mixed in AgGaS2 crystal to yield difference-frequency waves. For the efficient generation of difference frequency, an unstable resonator was employed as the OPO to reduce output beam divergence. A maximum difference-frequency power of 95 µJ/pulse was obtained near 7.5 µm for a 1-cm-long AgGaS2 crystal. Spectral noncritical phase matching within a specific tuning range was also investigated that permitted limited single-knob tuning (5.5–8.5 µm) of the difference-frequency generator.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Vodopyanov, P. G. Schunemann, “Efficient difference-frequency generation of 7–20-µm radiation in CdGeAs2,” Opt. Lett. 23, 1096–1098 (1998).
    [CrossRef]
  2. R. Utano, M. J. Ferry, “8–12-µm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.
  3. G. C. Bhar, P. K. Datta, A. M. Rudra, U. Chatterjee, “Spectral noncritically phase-matched near-infrared generation by difference frequency mixing in lithium triborate,” Appl. Phys. Lett. 64, 3074–3076 (1994).
    [CrossRef]
  4. G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
    [CrossRef]
  5. K. J. McEwan, “High power synchronously pumped AgGaS2 Optical parametric oscillator,” Opt. Lett. 23, 667–669 (1998).
    [CrossRef]
  6. P. P. Boon, W. R. Fen, C. T. Chong, X. B. Xi, “Nanosecond AgGaS2 optical parametric oscillator with more than 4 micron output,” Jpn. J. Appl. Phys. 36, L1661–L1664 (1997).
    [CrossRef]
  7. K. Kato, “High-power difference-frequency generation at 5–11 µm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698–699 (1984).
    [CrossRef]
  8. Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
    [CrossRef]
  9. E. Niwa, K. Masumoto, “Growth of AgGaS2 single crystals by a self-seeding vertical gradient freezing method,” J. Cryst. Growth 192, 354–360 (1998).
    [CrossRef]
  10. D. Andreou, “16 µm tunable source using parametric processes in nonlinear crystals,” Opt. Commun. 23, 37–43 (1977).
    [CrossRef]
  11. B. C. Johnson, V. J. Newell, J. B. Clark, E. S. McPhee, “Narrow bandwidth low divergence optical parametric oscillator for nonlinear frequency conversion applications,” J. Opt. Soc. Am. B 12, 2122–2127 (1995).
    [CrossRef]
  12. A. W. Lawrence, Z. X. Jiang, T. A. King, “Characterization of an Nd:YAG-pumped BBO optical parametric oscillator in collinear and noncollinear phase-matched configurations,” IEEE J. Quantum Electron. 30, 2961–2969 (1994).
    [CrossRef]
  13. K. S. Abedin, S. Haidar, Y. Konno, C. Yakyu, H. Ito, “Difference frequency generation of 5–18 µm in a AgGaSe2 crystal,” Appl. Opt. 37, 1642–1646 (1998).
    [CrossRef]
  14. A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
    [CrossRef]
  15. D. L. Fenimore, K. L. Schepler, D. Zelmon, S. Kuck, “Rubidium titanyl arsenate difference-frequency generation and validation of new Sellmeier coefficients,” J. Opt. Soc. Am. B 13, 1935–1940 (1996).
    [CrossRef]

1998

1997

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

P. P. Boon, W. R. Fen, C. T. Chong, X. B. Xi, “Nanosecond AgGaS2 optical parametric oscillator with more than 4 micron output,” Jpn. J. Appl. Phys. 36, L1661–L1664 (1997).
[CrossRef]

1996

1995

1994

A. W. Lawrence, Z. X. Jiang, T. A. King, “Characterization of an Nd:YAG-pumped BBO optical parametric oscillator in collinear and noncollinear phase-matched configurations,” IEEE J. Quantum Electron. 30, 2961–2969 (1994).
[CrossRef]

G. C. Bhar, P. K. Datta, A. M. Rudra, U. Chatterjee, “Spectral noncritically phase-matched near-infrared generation by difference frequency mixing in lithium triborate,” Appl. Phys. Lett. 64, 3074–3076 (1994).
[CrossRef]

1984

K. Kato, “High-power difference-frequency generation at 5–11 µm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698–699 (1984).
[CrossRef]

Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

1977

D. Andreou, “16 µm tunable source using parametric processes in nonlinear crystals,” Opt. Commun. 23, 37–43 (1977).
[CrossRef]

1972

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Abedin, K. S.

Andreou, D.

D. Andreou, “16 µm tunable source using parametric processes in nonlinear crystals,” Opt. Commun. 23, 37–43 (1977).
[CrossRef]

Bhar, G. C.

G. C. Bhar, P. K. Datta, A. M. Rudra, U. Chatterjee, “Spectral noncritically phase-matched near-infrared generation by difference frequency mixing in lithium triborate,” Appl. Phys. Lett. 64, 3074–3076 (1994).
[CrossRef]

Boon, P. P.

P. P. Boon, W. R. Fen, C. T. Chong, X. B. Xi, “Nanosecond AgGaS2 optical parametric oscillator with more than 4 micron output,” Jpn. J. Appl. Phys. 36, L1661–L1664 (1997).
[CrossRef]

Boyd, G. D.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Byer, R. L.

Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Chatterjee, U.

G. C. Bhar, P. K. Datta, A. M. Rudra, U. Chatterjee, “Spectral noncritically phase-matched near-infrared generation by difference frequency mixing in lithium triborate,” Appl. Phys. Lett. 64, 3074–3076 (1994).
[CrossRef]

Chong, C. T.

P. P. Boon, W. R. Fen, C. T. Chong, X. B. Xi, “Nanosecond AgGaS2 optical parametric oscillator with more than 4 micron output,” Jpn. J. Appl. Phys. 36, L1661–L1664 (1997).
[CrossRef]

Clark, J. B.

Datta, P. K.

G. C. Bhar, P. K. Datta, A. M. Rudra, U. Chatterjee, “Spectral noncritically phase-matched near-infrared generation by difference frequency mixing in lithium triborate,” Appl. Phys. Lett. 64, 3074–3076 (1994).
[CrossRef]

Eckhardt, R. C.

Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Fan, Y. X.

Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Fen, W. R.

P. P. Boon, W. R. Fen, C. T. Chong, X. B. Xi, “Nanosecond AgGaS2 optical parametric oscillator with more than 4 micron output,” Jpn. J. Appl. Phys. 36, L1661–L1664 (1997).
[CrossRef]

Fenimore, D. L.

Ferry, M. J.

R. Utano, M. J. Ferry, “8–12-µm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

Haidar, S.

Harasaki, A.

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Ito, H.

Jiang, Z. X.

A. W. Lawrence, Z. X. Jiang, T. A. King, “Characterization of an Nd:YAG-pumped BBO optical parametric oscillator in collinear and noncollinear phase-matched configurations,” IEEE J. Quantum Electron. 30, 2961–2969 (1994).
[CrossRef]

Johnson, B. C.

Kasper, H. M.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Kato, K.

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

K. Kato, “High-power difference-frequency generation at 5–11 µm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698–699 (1984).
[CrossRef]

King, T. A.

A. W. Lawrence, Z. X. Jiang, T. A. King, “Characterization of an Nd:YAG-pumped BBO optical parametric oscillator in collinear and noncollinear phase-matched configurations,” IEEE J. Quantum Electron. 30, 2961–2969 (1994).
[CrossRef]

Konno, Y.

Kuck, S.

Lawrence, A. W.

A. W. Lawrence, Z. X. Jiang, T. A. King, “Characterization of an Nd:YAG-pumped BBO optical parametric oscillator in collinear and noncollinear phase-matched configurations,” IEEE J. Quantum Electron. 30, 2961–2969 (1994).
[CrossRef]

Masumoto, K.

E. Niwa, K. Masumoto, “Growth of AgGaS2 single crystals by a self-seeding vertical gradient freezing method,” J. Cryst. Growth 192, 354–360 (1998).
[CrossRef]

McEwan, K. J.

McFee, J. H.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

McPhee, E. S.

Newell, V. J.

Niwa, E.

E. Niwa, K. Masumoto, “Growth of AgGaS2 single crystals by a self-seeding vertical gradient freezing method,” J. Cryst. Growth 192, 354–360 (1998).
[CrossRef]

Route, R. K.

Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

Rudra, A. M.

G. C. Bhar, P. K. Datta, A. M. Rudra, U. Chatterjee, “Spectral noncritically phase-matched near-infrared generation by difference frequency mixing in lithium triborate,” Appl. Phys. Lett. 64, 3074–3076 (1994).
[CrossRef]

Schepler, K. L.

Schunemann, P. G.

Storz, F. G.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Utano, R.

R. Utano, M. J. Ferry, “8–12-µm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

Vodopyanov, K. L.

Xi, X. B.

P. P. Boon, W. R. Fen, C. T. Chong, X. B. Xi, “Nanosecond AgGaS2 optical parametric oscillator with more than 4 micron output,” Jpn. J. Appl. Phys. 36, L1661–L1664 (1997).
[CrossRef]

Yakyu, C.

Zelmon, D.

Appl. Opt.

Appl. Phys. Lett.

G. C. Bhar, P. K. Datta, A. M. Rudra, U. Chatterjee, “Spectral noncritically phase-matched near-infrared generation by difference frequency mixing in lithium triborate,” Appl. Phys. Lett. 64, 3074–3076 (1994).
[CrossRef]

Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313–315 (1984).
[CrossRef]

IEEE J. Quantum Electron.

K. Kato, “High-power difference-frequency generation at 5–11 µm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698–699 (1984).
[CrossRef]

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

A. W. Lawrence, Z. X. Jiang, T. A. King, “Characterization of an Nd:YAG-pumped BBO optical parametric oscillator in collinear and noncollinear phase-matched configurations,” IEEE J. Quantum Electron. 30, 2961–2969 (1994).
[CrossRef]

J. Cryst. Growth

E. Niwa, K. Masumoto, “Growth of AgGaS2 single crystals by a self-seeding vertical gradient freezing method,” J. Cryst. Growth 192, 354–360 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

P. P. Boon, W. R. Fen, C. T. Chong, X. B. Xi, “Nanosecond AgGaS2 optical parametric oscillator with more than 4 micron output,” Jpn. J. Appl. Phys. 36, L1661–L1664 (1997).
[CrossRef]

Opt. Commun.

D. Andreou, “16 µm tunable source using parametric processes in nonlinear crystals,” Opt. Commun. 23, 37–43 (1977).
[CrossRef]

Opt. Lett.

Other

R. Utano, M. J. Ferry, “8–12-µm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: FI, Faraday isolator; M1, M2, input and output mirrors, respectively, of the OPO; R, 1.06-µm pump reflector; A, 7-mm aperture, Q, quartz retarder; G, Ge filter; PD, pyroelectric detector.

Fig. 2
Fig. 2

Experimental wavelength-tuning curve for DFG in AgGaS2 (Type I: e - o + o) together with the theoretical angle-tuning curve calculated from the dispersion equation in Ref. 14.

Fig. 3
Fig. 3

Generated infrared power as a function of wavelength for two crystal angles (θ) for a Type I DFG in AgGaS2. The input energy (signal + idler) is set to 10 mJ/pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ωd=ωs-ωi.
pdps=23π2deff2L2piε0cndninsλd2A sinc2ΔkL/2

Metrics