Abstract

A prototype solid-state, multispectral hybrid laser has been designed and tested. The laser provides simultaneous outputs at several wavelengths. The hybrid-laser concept is based on the efficient use of flash-lamp-pump energy distributed between two complementary lasing materials, Nd:YAG and Cr:LiSAF, that share the same pump cavity. The prototype Q-switched hybrid laser provides dual-fundamental-wavelength output at 850 and 1064 nm as well as frequency-doubled output at 532 nm. The laser achieved 3.6% slope efficiency (combined) in free-running operation and 2.4% when Q switched. Higher efficiencies can be obtained with improvements in laser crystal quality and pump cavity configuration.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cornillault, L. Cabaret, T. Pain, “Solid-state lasers for lidar applications,” in Proceedings of the International Conference on Lasers ’92, Houston, Texas, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 584–594.
  2. L. G. DeShazer, “An investigation of ionic cross relaxation by a quantum electronic technique,” in Optical Properties of Ions in Crystals, H. M. Crosswhite, H. W. Moos, eds. (Interscience, New York, 1967), pp. 507–518.
  3. A. A. Kaminskii, “Laser with combined active medium,” Sov. Phys. Dokl. 13, 413–416 (1968).
  4. W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1218–1220 (1987).
    [CrossRef]
  5. J. Machan, R. Kurtz, M. Bass, M. Birnbaum, “Simultaneous, multiple-wavelength lasing of (Ho, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1313–1315 (1987).
    [CrossRef]
  6. M. A. Andriasyan, N. V. Vartanyan, K. B. Kostanyan, “Simultaneous lasing at 1.06- and 2.96-µm wavelengths,” in Proceedings of the International Conference on Lasers, San Diego, California, D. G. Harris, J. Herbelin, eds. (STS, McLean, Va., 1991), pp. 111–114.
  7. M. Mrochen, K. Vogler, A. Meditec, “Miniature handpiece laser at 1- and 3-µm wavelength for medical application,” Laser Optoelectron. 28, 38–41 (1996).
  8. T. Shimada, J. W. Early, C. S. Lester, N. J. Cockroft, “Repetitively pulsed Cr:LiSAF laser for lidar applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 188–191.
  9. T. Ditmire, H. Nguyen, M. D. Perry, “Design and performance of a multiterawatt Cr:LiSAF laser system,” J. Opt. Soc. Am. B 11, 580–590 (1994).
    [CrossRef]
  10. F. Hanson, C. Bendall, P. Poirier, “Gain measurements and average power capabilities of Cr3+:LiSrAlF6,” Opt. Lett. 18, 1423–1425 (1993).
    [CrossRef] [PubMed]
  11. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 3, pp. 102–103.
  12. M. D. Perry et al., “Better materials trigger Cr:LiSAF laser development,” Laser Focus World 85–92 (September1993).
  13. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 8, pp. 453–457.

1996 (1)

M. Mrochen, K. Vogler, A. Meditec, “Miniature handpiece laser at 1- and 3-µm wavelength for medical application,” Laser Optoelectron. 28, 38–41 (1996).

1994 (1)

1993 (2)

F. Hanson, C. Bendall, P. Poirier, “Gain measurements and average power capabilities of Cr3+:LiSrAlF6,” Opt. Lett. 18, 1423–1425 (1993).
[CrossRef] [PubMed]

M. D. Perry et al., “Better materials trigger Cr:LiSAF laser development,” Laser Focus World 85–92 (September1993).

1987 (2)

W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1218–1220 (1987).
[CrossRef]

J. Machan, R. Kurtz, M. Bass, M. Birnbaum, “Simultaneous, multiple-wavelength lasing of (Ho, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1313–1315 (1987).
[CrossRef]

1968 (1)

A. A. Kaminskii, “Laser with combined active medium,” Sov. Phys. Dokl. 13, 413–416 (1968).

Andriasyan, M. A.

M. A. Andriasyan, N. V. Vartanyan, K. B. Kostanyan, “Simultaneous lasing at 1.06- and 2.96-µm wavelengths,” in Proceedings of the International Conference on Lasers, San Diego, California, D. G. Harris, J. Herbelin, eds. (STS, McLean, Va., 1991), pp. 111–114.

Bass, M.

J. Machan, R. Kurtz, M. Bass, M. Birnbaum, “Simultaneous, multiple-wavelength lasing of (Ho, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1313–1315 (1987).
[CrossRef]

W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1218–1220 (1987).
[CrossRef]

Bendall, C.

Birnbaum, M.

W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1218–1220 (1987).
[CrossRef]

J. Machan, R. Kurtz, M. Bass, M. Birnbaum, “Simultaneous, multiple-wavelength lasing of (Ho, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1313–1315 (1987).
[CrossRef]

Cabaret, L.

J. Cornillault, L. Cabaret, T. Pain, “Solid-state lasers for lidar applications,” in Proceedings of the International Conference on Lasers ’92, Houston, Texas, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 584–594.

Cockroft, N. J.

T. Shimada, J. W. Early, C. S. Lester, N. J. Cockroft, “Repetitively pulsed Cr:LiSAF laser for lidar applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 188–191.

Cornillault, J.

J. Cornillault, L. Cabaret, T. Pain, “Solid-state lasers for lidar applications,” in Proceedings of the International Conference on Lasers ’92, Houston, Texas, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 584–594.

DeShazer, L. G.

L. G. DeShazer, “An investigation of ionic cross relaxation by a quantum electronic technique,” in Optical Properties of Ions in Crystals, H. M. Crosswhite, H. W. Moos, eds. (Interscience, New York, 1967), pp. 507–518.

Ditmire, T.

Early, J. W.

T. Shimada, J. W. Early, C. S. Lester, N. J. Cockroft, “Repetitively pulsed Cr:LiSAF laser for lidar applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 188–191.

Hanson, F.

Kaminskii, A. A.

A. A. Kaminskii, “Laser with combined active medium,” Sov. Phys. Dokl. 13, 413–416 (1968).

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 8, pp. 453–457.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 3, pp. 102–103.

Kostanyan, K. B.

M. A. Andriasyan, N. V. Vartanyan, K. B. Kostanyan, “Simultaneous lasing at 1.06- and 2.96-µm wavelengths,” in Proceedings of the International Conference on Lasers, San Diego, California, D. G. Harris, J. Herbelin, eds. (STS, McLean, Va., 1991), pp. 111–114.

Kurtz, R.

J. Machan, R. Kurtz, M. Bass, M. Birnbaum, “Simultaneous, multiple-wavelength lasing of (Ho, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1313–1315 (1987).
[CrossRef]

W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1218–1220 (1987).
[CrossRef]

Lester, C. S.

T. Shimada, J. W. Early, C. S. Lester, N. J. Cockroft, “Repetitively pulsed Cr:LiSAF laser for lidar applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 188–191.

Machan, J.

W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1218–1220 (1987).
[CrossRef]

J. Machan, R. Kurtz, M. Bass, M. Birnbaum, “Simultaneous, multiple-wavelength lasing of (Ho, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1313–1315 (1987).
[CrossRef]

Meditec, A.

M. Mrochen, K. Vogler, A. Meditec, “Miniature handpiece laser at 1- and 3-µm wavelength for medical application,” Laser Optoelectron. 28, 38–41 (1996).

Mrochen, M.

M. Mrochen, K. Vogler, A. Meditec, “Miniature handpiece laser at 1- and 3-µm wavelength for medical application,” Laser Optoelectron. 28, 38–41 (1996).

Nguyen, H.

Pain, T.

J. Cornillault, L. Cabaret, T. Pain, “Solid-state lasers for lidar applications,” in Proceedings of the International Conference on Lasers ’92, Houston, Texas, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 584–594.

Perry, M. D.

T. Ditmire, H. Nguyen, M. D. Perry, “Design and performance of a multiterawatt Cr:LiSAF laser system,” J. Opt. Soc. Am. B 11, 580–590 (1994).
[CrossRef]

M. D. Perry et al., “Better materials trigger Cr:LiSAF laser development,” Laser Focus World 85–92 (September1993).

Poirier, P.

Shi, W. Q.

W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1218–1220 (1987).
[CrossRef]

Shimada, T.

T. Shimada, J. W. Early, C. S. Lester, N. J. Cockroft, “Repetitively pulsed Cr:LiSAF laser for lidar applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 188–191.

Vartanyan, N. V.

M. A. Andriasyan, N. V. Vartanyan, K. B. Kostanyan, “Simultaneous lasing at 1.06- and 2.96-µm wavelengths,” in Proceedings of the International Conference on Lasers, San Diego, California, D. G. Harris, J. Herbelin, eds. (STS, McLean, Va., 1991), pp. 111–114.

Vogler, K.

M. Mrochen, K. Vogler, A. Meditec, “Miniature handpiece laser at 1- and 3-µm wavelength for medical application,” Laser Optoelectron. 28, 38–41 (1996).

Appl. Phys. Lett. (2)

W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, “Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1218–1220 (1987).
[CrossRef]

J. Machan, R. Kurtz, M. Bass, M. Birnbaum, “Simultaneous, multiple-wavelength lasing of (Ho, Nd):Y3Al5O12,” Appl. Phys. Lett. 51, 1313–1315 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus World 85–92 (1)

M. D. Perry et al., “Better materials trigger Cr:LiSAF laser development,” Laser Focus World 85–92 (September1993).

Laser Optoelectron. (1)

M. Mrochen, K. Vogler, A. Meditec, “Miniature handpiece laser at 1- and 3-µm wavelength for medical application,” Laser Optoelectron. 28, 38–41 (1996).

Opt. Lett. (1)

Sov. Phys. Dokl. (1)

A. A. Kaminskii, “Laser with combined active medium,” Sov. Phys. Dokl. 13, 413–416 (1968).

Other (6)

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 8, pp. 453–457.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 3, pp. 102–103.

T. Shimada, J. W. Early, C. S. Lester, N. J. Cockroft, “Repetitively pulsed Cr:LiSAF laser for lidar applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 188–191.

M. A. Andriasyan, N. V. Vartanyan, K. B. Kostanyan, “Simultaneous lasing at 1.06- and 2.96-µm wavelengths,” in Proceedings of the International Conference on Lasers, San Diego, California, D. G. Harris, J. Herbelin, eds. (STS, McLean, Va., 1991), pp. 111–114.

J. Cornillault, L. Cabaret, T. Pain, “Solid-state lasers for lidar applications,” in Proceedings of the International Conference on Lasers ’92, Houston, Texas, C. P. Wang, ed. (STS, McLean, Va., 1993), pp. 584–594.

L. G. DeShazer, “An investigation of ionic cross relaxation by a quantum electronic technique,” in Optical Properties of Ions in Crystals, H. M. Crosswhite, H. W. Moos, eds. (Interscience, New York, 1967), pp. 507–518.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Emission spectrum of the flash-lamp and the absorption features of Nd:YAG and Cr:LiSAF.

Fig. 2
Fig. 2

Hybrid-laser pump cavity.

Fig. 3
Fig. 3

Hybrid-laser resonator layout.

Fig. 4
Fig. 4

Measured hybrid-laser output.

Fig. 5
Fig. 5

Cr:LiSAF lasing threshold data (free running).

Fig. 6
Fig. 6

Nd:YAG lasing threshold data (free running).

Fig. 7
Fig. 7

Resonator loss data (Findlay–Clay plot).

Fig. 8
Fig. 8

Laser repetition-rate scaling.

Tables (2)

Tables Icon

Table 1 Gain/Loss Parameters from Laser Model (Q-switched Operation)a

Tables Icon

Table 2 Comparison of Q-switched Performance, 35-J Pumping

Metrics