Abstract

A monolithically integrated optical displacement sensor based on triangulation and optical beam deflection is reported. This sensor is simple and consists of only a laser diode, a polyimide waveguide, and a split detector (a pair of photodiodes) upon a GaAs substrate. The resultant prototype device is extremely small (750 µm × 800 µm). Experiments have shown that this sensor can measure the displacement of a mirror with resolution of better than 4 nm. Additionally, we have experimentally demonstrated both axial and lateral displacement measurements when we used a cylindrical micromirror (diameter, 125 µm) as a movable external object.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
    [CrossRef]
  2. D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
    [CrossRef]
  3. D. Hofstetter, H. P. Zappe, R. Dändliker, “A monolithically integrated double Michelson interferometer for optical displacement measurement with direction determination,” IEEE Photon. Technol. Lett. 8, 1370–1372 (1996).
    [CrossRef]
  4. R. Sawada, E. Higurashi, T. Ito, M. Tsubamoto, O. Ohguchi, “Integrated micro-laser displacement sensor,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 19–24.
  5. C. A. J. Putman, B. G. DeGrooth, N. F. Van Hulst, J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992).
    [CrossRef]
  6. R. Sawada, O. Ohguchi, K. Mise, M. Tsubamoto, “Fabrication of advanced integrated optical micro-encoder chip,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 337–342.
  7. R. Sawada, “Integrated optical encoder,” presented at the 8th International Conference on Solid-State Sensors and Actuators (Transducers ’95) and Eurosensors IX, Stockholm, Sweden, 25–29 June 1995.
  8. F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
    [CrossRef]
  9. T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Low-loss, heat-resistant optical waveguide using new fluorinated polyimides,” Electron. Lett. 29, 269–270 (1993).
    [CrossRef]
  10. T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27, 6665–6670 (1994).
    [CrossRef]
  11. A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” in Polymers in Microlithography: Materials and Processes, ACS Symp. Ser.412, 175–188 (1989).

1996 (1)

D. Hofstetter, H. P. Zappe, R. Dändliker, “A monolithically integrated double Michelson interferometer for optical displacement measurement with direction determination,” IEEE Photon. Technol. Lett. 8, 1370–1372 (1996).
[CrossRef]

1995 (2)

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

1994 (1)

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27, 6665–6670 (1994).
[CrossRef]

1993 (1)

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Low-loss, heat-resistant optical waveguide using new fluorinated polyimides,” Electron. Lett. 29, 269–270 (1993).
[CrossRef]

1992 (1)

C. A. J. Putman, B. G. DeGrooth, N. F. Van Hulst, J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992).
[CrossRef]

1989 (1)

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

Ando, S.

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27, 6665–6670 (1994).
[CrossRef]

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Low-loss, heat-resistant optical waveguide using new fluorinated polyimides,” Electron. Lett. 29, 269–270 (1993).
[CrossRef]

Ban, H.

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” in Polymers in Microlithography: Materials and Processes, ACS Symp. Ser.412, 175–188 (1989).

Dändliker, R.

D. Hofstetter, H. P. Zappe, R. Dändliker, “A monolithically integrated double Michelson interferometer for optical displacement measurement with direction determination,” IEEE Photon. Technol. Lett. 8, 1370–1372 (1996).
[CrossRef]

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

DeGrooth, B. G.

C. A. J. Putman, B. G. DeGrooth, N. F. Van Hulst, J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992).
[CrossRef]

Greve, J.

C. A. J. Putman, B. G. DeGrooth, N. F. Van Hulst, J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992).
[CrossRef]

Higurashi, E.

R. Sawada, E. Higurashi, T. Ito, M. Tsubamoto, O. Ohguchi, “Integrated micro-laser displacement sensor,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 19–24.

Hirata, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Hofstetter, D.

D. Hofstetter, H. P. Zappe, R. Dändliker, “A monolithically integrated double Michelson interferometer for optical displacement measurement with direction determination,” IEEE Photon. Technol. Lett. 8, 1370–1372 (1996).
[CrossRef]

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

Iio, S.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Imamura, S.

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” in Polymers in Microlithography: Materials and Processes, ACS Symp. Ser.412, 175–188 (1989).

Ito, T.

R. Sawada, E. Higurashi, T. Ito, M. Tsubamoto, O. Ohguchi, “Integrated micro-laser displacement sensor,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 19–24.

Matsuura, T.

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27, 6665–6670 (1994).
[CrossRef]

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Low-loss, heat-resistant optical waveguide using new fluorinated polyimides,” Electron. Lett. 29, 269–270 (1993).
[CrossRef]

Mise, K.

R. Sawada, O. Ohguchi, K. Mise, M. Tsubamoto, “Fabrication of advanced integrated optical micro-encoder chip,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 337–342.

Nishihara, H.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Ohguchi, O.

R. Sawada, O. Ohguchi, K. Mise, M. Tsubamoto, “Fabrication of advanced integrated optical micro-encoder chip,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 337–342.

R. Sawada, E. Higurashi, T. Ito, M. Tsubamoto, O. Ohguchi, “Integrated micro-laser displacement sensor,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 19–24.

Putman, C. A. J.

C. A. J. Putman, B. G. DeGrooth, N. F. Van Hulst, J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992).
[CrossRef]

Sasaki, S.

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27, 6665–6670 (1994).
[CrossRef]

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Low-loss, heat-resistant optical waveguide using new fluorinated polyimides,” Electron. Lett. 29, 269–270 (1993).
[CrossRef]

Sawada, R.

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

R. Sawada, O. Ohguchi, K. Mise, M. Tsubamoto, “Fabrication of advanced integrated optical micro-encoder chip,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 337–342.

R. Sawada, “Integrated optical encoder,” presented at the 8th International Conference on Solid-State Sensors and Actuators (Transducers ’95) and Eurosensors IX, Stockholm, Sweden, 25–29 June 1995.

R. Sawada, E. Higurashi, T. Ito, M. Tsubamoto, O. Ohguchi, “Integrated micro-laser displacement sensor,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 19–24.

Shimokawa, F.

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

Suehiro, M.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Suhara, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Tanaka, A.

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” in Polymers in Microlithography: Materials and Processes, ACS Symp. Ser.412, 175–188 (1989).

Tanaka, H.

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

Taniguchi, T.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Tsubamoto, M.

R. Sawada, E. Higurashi, T. Ito, M. Tsubamoto, O. Ohguchi, “Integrated micro-laser displacement sensor,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 19–24.

R. Sawada, O. Ohguchi, K. Mise, M. Tsubamoto, “Fabrication of advanced integrated optical micro-encoder chip,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 337–342.

Uemukai, M.

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

Uenishi, Y.

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

Van Hulst, N. F.

C. A. J. Putman, B. G. DeGrooth, N. F. Van Hulst, J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992).
[CrossRef]

Yamamoto, F.

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27, 6665–6670 (1994).
[CrossRef]

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Low-loss, heat-resistant optical waveguide using new fluorinated polyimides,” Electron. Lett. 29, 269–270 (1993).
[CrossRef]

Zappe, H. P.

D. Hofstetter, H. P. Zappe, R. Dändliker, “A monolithically integrated double Michelson interferometer for optical displacement measurement with direction determination,” IEEE Photon. Technol. Lett. 8, 1370–1372 (1996).
[CrossRef]

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

Electron. Lett. (2)

D. Hofstetter, H. P. Zappe, R. Dändliker, “Monolithically integrated optical displacement sensor in GaAs/AlGaAs,” Electron. Lett. 31, 2121–2122 (1995).
[CrossRef]

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Low-loss, heat-resistant optical waveguide using new fluorinated polyimides,” Electron. Lett. 29, 269–270 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, S. Iio, M. Suehiro, “Monolithic integrated-optic position/displacement sensor using waveguide gratings and a QW-DFB laser,” IEEE Photon. Technol. Lett. 7, 1195–1197 (1995).
[CrossRef]

D. Hofstetter, H. P. Zappe, R. Dändliker, “A monolithically integrated double Michelson interferometer for optical displacement measurement with direction determination,” IEEE Photon. Technol. Lett. 8, 1370–1372 (1996).
[CrossRef]

J. Appl. Phys. (2)

C. A. J. Putman, B. G. DeGrooth, N. F. Van Hulst, J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys. 72, 6–12 (1992).
[CrossRef]

F. Shimokawa, H. Tanaka, Y. Uenishi, R. Sawada, “Reactive-fast-atom beam etching of GaAs using Cl2 gas,” J. Appl. Phys. 66, 2613–2618 (1989).
[CrossRef]

Macromolecules (1)

T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components,” Macromolecules 27, 6665–6670 (1994).
[CrossRef]

Other (4)

A. Tanaka, H. Ban, S. Imamura, “Preparation of a novel silicone-based positive photoresist and its application to an image reversal process,” in Polymers in Microlithography: Materials and Processes, ACS Symp. Ser.412, 175–188 (1989).

R. Sawada, O. Ohguchi, K. Mise, M. Tsubamoto, “Fabrication of advanced integrated optical micro-encoder chip,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. 337–342.

R. Sawada, “Integrated optical encoder,” presented at the 8th International Conference on Solid-State Sensors and Actuators (Transducers ’95) and Eurosensors IX, Stockholm, Sweden, 25–29 June 1995.

R. Sawada, E. Higurashi, T. Ito, M. Tsubamoto, O. Ohguchi, “Integrated micro-laser displacement sensor,” in Proceedings of the IEEE Micro Electro Mechanical Systems Workshop (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), pp. 19–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sensing principles of (a) triangulation and (b) OBD.

Fig. 2
Fig. 2

Monolithically integrated optical displacement sensor: (a) schematic diagram, (b) optical microscope photograph of the fabricated device.

Fig. 3
Fig. 3

Schematic configuration of the GaAs/AlGaAs ridge waveguide laser.

Fig. 4
Fig. 4

I–L and I–V curves (pulse width, 1 µs; repetition rate, 1 kHz at room temperature). (a) I–L and I–V curves of the LD (cavity length, 220 µm) integrated with the polyimide waveguide (length, 250 µm), (b) I–V curve of the integrated PD.

Fig. 5
Fig. 5

FWHM of the laser beam in the vertical and horizontal directions as a function of distance from the edge of the fluorinated polyimide waveguide.

Fig. 6
Fig. 6

Signal-to-rms-noise level versus axial displacement of the mirror.

Fig. 7
Fig. 7

Influence of the tilt angle of the monolithically integrated displacement sensor on the sensitivity: (a) schematic diagram, (b) sensitivity change versus tilt angle.

Fig. 8
Fig. 8

Displacement measurement of a cylindrical micromirror with a monolithically integrated displacement sensor: (a) schematic diagram, (b) signal-to-rms-noise level versus displacement.

Tables (2)

Tables Icon

Table 1 Measured Parameters for the Mirror in Fig. 6

Tables Icon

Table 2 Measured Parameters for the Cylindrical Micromirror in Fig. 8(b)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔdΔSNFWHM=2.35 ΔdΔSNrms,

Metrics