Abstract

We introduce a Fabry–Perot cavity-length modulation technique for measuring the linewidth of a continuous wave (cw) laser. We calculate the peak intensity of a cw laser transmitted through a Fabry–Perot cavity as a function of mirror speed. By fitting the experimental data to the results of the calculation, we determine the linewidth of a frequency-stabilized cw laser. The linewidth of a cw ring dye laser measured in the 570–590-nm wavelength range is ∼170 ± 20 kHz. We also demonstrate the use of this technique to measure the reflectivity of a high-reflectance mirror.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Johnston, R. H. Brady, W. Proffitt, “Powerful single-frequency ring dye laser spanning the visible spectrum,” Appl. Opt. 21, 2307–2316 (1982).
    [CrossRef] [PubMed]
  2. Y. Tamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. QE-17, 919–935 (1981).
    [CrossRef]
  3. J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
    [CrossRef]
  4. A. Dandridge, A. B. Tveten, “Phase noise of single-mode diode lasers in interferometer systems,” Appl. Phys. Lett. 39, 530–532 (1981).
    [CrossRef]
  5. T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
    [CrossRef]
  6. R. L. Fork, D. R. Herriott, H. Kogelnik, “A scanning spherical mirror interferometer for spectral analysis of laser radiation,” Appl. Opt. 3, 1471–1484 (1964).
    [CrossRef]
  7. T. Takakura, K. Iga, T. Tako, “Linewidth measurement of a single longitudinal mode AlGaAs laser with a Fabry–Perot interferometer,” Jpn. J. Appl. Phys. 19, L725–L727 (1980).
    [CrossRef]
  8. Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
    [CrossRef]
  9. K. An, C. Yang, R. R. Dasari, M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995).
    [CrossRef] [PubMed]
  10. J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14, 2811–2817 (1997).
    [CrossRef]
  11. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), pp. 56–60.
  12. G. Hernandez, “Piezoelectric scanning of Fabry–Perot spectrometers: nonlinearities,” Appl. Opt. 17, 3088–3095 (1978).
    [CrossRef] [PubMed]
  13. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [CrossRef]
  14. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 84–89.

1997 (2)

1995 (1)

1993 (1)

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

1987 (1)

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

1982 (1)

1981 (2)

Y. Tamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. QE-17, 919–935 (1981).
[CrossRef]

A. Dandridge, A. B. Tveten, “Phase noise of single-mode diode lasers in interferometer systems,” Appl. Phys. Lett. 39, 530–532 (1981).
[CrossRef]

1980 (2)

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

T. Takakura, K. Iga, T. Tako, “Linewidth measurement of a single longitudinal mode AlGaAs laser with a Fabry–Perot interferometer,” Jpn. J. Appl. Phys. 19, L725–L727 (1980).
[CrossRef]

1978 (1)

1964 (1)

An, K.

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 84–89.

Bilger, H. R.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Brady, R. H.

Bretenaker, F.

Dandridge, A.

A. Dandridge, A. B. Tveten, “Phase noise of single-mode diode lasers in interferometer systems,” Appl. Phys. Lett. 39, 530–532 (1981).
[CrossRef]

Dasari, R. R.

Feld, M. S.

Fork, R. L.

Gläser, M.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Helmcke, J.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Hernandez, G.

Herriott, D. R.

Iga, K.

T. Takakura, K. Iga, T. Tako, “Linewidth measurement of a single longitudinal mode AlGaAs laser with a Fabry–Perot interferometer,” Jpn. J. Appl. Phys. 19, L725–L727 (1980).
[CrossRef]

Johnston, T. F.

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Kimura, T.

Y. Tamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. QE-17, 919–935 (1981).
[CrossRef]

Kogelnik, H.

Le Floch, A.

Li, Z.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), pp. 56–60.

Mensing, F.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Morinaga, A.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

Poirson, J.

Proffitt, W.

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Snyder, J. J.

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Stedman, G. E.

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Takakura, T.

T. Takakura, K. Iga, T. Tako, “Linewidth measurement of a single longitudinal mode AlGaAs laser with a Fabry–Perot interferometer,” Jpn. J. Appl. Phys. 19, L725–L727 (1980).
[CrossRef]

Tako, T.

T. Takakura, K. Iga, T. Tako, “Linewidth measurement of a single longitudinal mode AlGaAs laser with a Fabry–Perot interferometer,” Jpn. J. Appl. Phys. 19, L725–L727 (1980).
[CrossRef]

Tamamoto, Y.

Y. Tamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. QE-17, 919–935 (1981).
[CrossRef]

Tveten, A. B.

A. Dandridge, A. B. Tveten, “Phase noise of single-mode diode lasers in interferometer systems,” Appl. Phys. Lett. 39, 530–532 (1981).
[CrossRef]

Vallet, M.

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), pp. 56–60.

Yang, C.

Appl. Opt. (3)

Appl. Phys. B (1)

J. Helmcke, J. J. Snyder, A. Morinaga, F. Mensing, M. Gläser, “New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator,” Appl. Phys. B 43, 85–91 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

A. Dandridge, A. B. Tveten, “Phase noise of single-mode diode lasers in interferometer systems,” Appl. Phys. Lett. 39, 530–532 (1981).
[CrossRef]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630–631 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Tamamoto, T. Kimura, “Coherent optical fiber transmission systems,” IEEE J. Quantum Electron. QE-17, 919–935 (1981).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Takakura, K. Iga, T. Tako, “Linewidth measurement of a single longitudinal mode AlGaAs laser with a Fabry–Perot interferometer,” Jpn. J. Appl. Phys. 19, L725–L727 (1980).
[CrossRef]

Opt. Commun. (1)

Z. Li, G. E. Stedman, H. R. Bilger, “Asymmetric response profile of a scanning Fabry–Perot interferometer,” Opt. Commun. 100, 240–246 (1993).
[CrossRef]

Opt. Lett. (1)

Other (2)

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), pp. 56–60.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 84–89.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized MF calculated as a function of scan speed: (a) for laser linewidths of 10 kHz, 100 kHz, and 1 MHz with a fixed mirror reflectivity of 99.99% and (b) for mirror reflectivities of 99.95%, 99.99%, and 99.995% with a fixed linewidth of 100 kHz.

Fig. 2
Fig. 2

Schematic view of the experimental setup.

Fig. 3
Fig. 3

Fitting of the MF measured as a function of the scan speed of the cavity mirror to the results of the numerical calculation.

Fig. 4
Fig. 4

Measured laser linewidth at several wavelengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IoutlI0=T22π0 dω R2l+δωωLω-ω02+ωL/22n=-l+δω Rn×exp-iωtrvc n22,
χ2=kαfevk-fcvk2fcvk.

Metrics