Abstract

Wavelength-modulation spectroscopy with a standard commercial 1.55-µm distributed-feedback diode laser was applied to in situ quantitative measurements of OH radical concentration in combustion environments. The second-harmonic (2f) signal was generated from absorption by the P11.5 (ν′, ν") = (2, 0) overtone vibrational transition of OH at 6421.354 cm-1. The absorption occurred in the postflame region of a two-dimensional laminar counterflow burner (Tsuji burner) with a 60-mm line-of-sight path length. The postflame region lies between propane–air premixed twin flames stabilized in the Tsuji burner at various equivalence ratios (ϕ = 0.65–1.0). The OH concentrations were determined by least-squares fitting of theoretical 2f line shapes to the experimental counterparts. The measured OH concentrations were in general agreement with adiabatic chemical equilibrium predictions. The lower limit of OH detectivity by multiline deconvolution was limited by ubiquitous unidentified high-temperature H2O transitions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription