Abstract

Hollow fibers for transmitting CO2 laser light were fabricated by the chemical vapor deposition (CVD) method. A dielectric film of copper oxide (Cu2O) was deposited upon the inside of a Ag-coated glass capillary by use of a metal acetylacetonate as the precursor. The waveguide, which was coated with Cu2O and had a bore diameter of 700 µm, showed a loss of 0.9 dB/m for CO2 laser light. The Cu2O film deposited by CVD had high chemical and heat resistivity. Therefore a hollow fiber coated with copper oxide is suitable for high-power laser applications in a severe environment.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, ed., Selected Papers on Infrared Fiber Optics, Vol. MS-9 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1990).
  2. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 126–134 (1984).
  3. N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, S. Ruschin, “Use of metallic and dielectric films for hollow fibers,” Fiber Integr. Opt. 6, 347–361 (1987).
    [CrossRef]
  4. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  5. Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
    [CrossRef] [PubMed]
  6. Y. Matsuura, J. A. Harrington, “Hollow glass waveguides with a three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A 14, 1255–1259 (1997).
    [CrossRef]
  7. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  8. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, New York, 1991).
  9. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).
  10. A. Inberg, M. Oksman, N. I. Croitoru, “Novel copper hollow waveguides for IR laser radiation,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 28–38 (1996).
    [CrossRef]
  11. Y. Wang, H. Hiraga, M. Miyagi, A. Inberg, M. Oksman, N. I. Croitoru, “Characterization of copper waveguides for mid-IR radiation with applications in medicine,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 39–45 (1996).
    [CrossRef]
  12. M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
    [CrossRef]
  13. H. O. Pierson, Handbook of Chemical Vapor Deposition (Noyes, Park Ridge, Ill., 1992).
  14. Y. Wang, Y. W. Shi, Y. Matsuura, M. Miyagi, “Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er:YAG laser light,” Opt. Laser Technol. 29, 455–461 (1998).
    [CrossRef]

1998

Y. Wang, Y. W. Shi, Y. Matsuura, M. Miyagi, “Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er:YAG laser light,” Opt. Laser Technol. 29, 455–461 (1998).
[CrossRef]

1997

1995

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Y. Matsuura, J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
[CrossRef] [PubMed]

1994

1987

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, S. Ruschin, “Use of metallic and dielectric films for hollow fibers,” Fiber Integr. Opt. 6, 347–361 (1987).
[CrossRef]

1984

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 126–134 (1984).

Abe, S.

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Abel, T.

Aizawa, M.

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Croitoru, N.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, S. Ruschin, “Use of metallic and dielectric films for hollow fibers,” Fiber Integr. Opt. 6, 347–361 (1987).
[CrossRef]

Croitoru, N. I.

A. Inberg, M. Oksman, N. I. Croitoru, “Novel copper hollow waveguides for IR laser radiation,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 28–38 (1996).
[CrossRef]

Y. Wang, H. Hiraga, M. Miyagi, A. Inberg, M. Oksman, N. I. Croitoru, “Characterization of copper waveguides for mid-IR radiation with applications in medicine,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 39–45 (1996).
[CrossRef]

Dror, J.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, S. Ruschin, “Use of metallic and dielectric films for hollow fibers,” Fiber Integr. Opt. 6, 347–361 (1987).
[CrossRef]

Goldenberg, E.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, S. Ruschin, “Use of metallic and dielectric films for hollow fibers,” Fiber Integr. Opt. 6, 347–361 (1987).
[CrossRef]

Harrington, J. A.

Hiraga, H.

Y. Wang, H. Hiraga, M. Miyagi, A. Inberg, M. Oksman, N. I. Croitoru, “Characterization of copper waveguides for mid-IR radiation with applications in medicine,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 39–45 (1996).
[CrossRef]

Hirsch, J.

Inberg, A.

A. Inberg, M. Oksman, N. I. Croitoru, “Novel copper hollow waveguides for IR laser radiation,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 28–38 (1996).
[CrossRef]

Y. Wang, H. Hiraga, M. Miyagi, A. Inberg, M. Oksman, N. I. Croitoru, “Characterization of copper waveguides for mid-IR radiation with applications in medicine,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 39–45 (1996).
[CrossRef]

Kato, Y.

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 126–134 (1984).

Matsuura, Y.

Mendlovic, D.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, S. Ruschin, “Use of metallic and dielectric films for hollow fibers,” Fiber Integr. Opt. 6, 347–361 (1987).
[CrossRef]

Miyagi, M.

Y. Wang, Y. W. Shi, Y. Matsuura, M. Miyagi, “Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er:YAG laser light,” Opt. Laser Technol. 29, 455–461 (1998).
[CrossRef]

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 126–134 (1984).

Y. Wang, H. Hiraga, M. Miyagi, A. Inberg, M. Oksman, N. I. Croitoru, “Characterization of copper waveguides for mid-IR radiation with applications in medicine,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 39–45 (1996).
[CrossRef]

Oksman, M.

Y. Wang, H. Hiraga, M. Miyagi, A. Inberg, M. Oksman, N. I. Croitoru, “Characterization of copper waveguides for mid-IR radiation with applications in medicine,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 39–45 (1996).
[CrossRef]

A. Inberg, M. Oksman, N. I. Croitoru, “Novel copper hollow waveguides for IR laser radiation,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 28–38 (1996).
[CrossRef]

Onodera, S.

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Osawa, M.

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Pierson, H. O.

H. O. Pierson, Handbook of Chemical Vapor Deposition (Noyes, Park Ridge, Ill., 1992).

Ruschin, S.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, S. Ruschin, “Use of metallic and dielectric films for hollow fibers,” Fiber Integr. Opt. 6, 347–361 (1987).
[CrossRef]

Shi, Y. W.

Y. Wang, Y. W. Shi, Y. Matsuura, M. Miyagi, “Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er:YAG laser light,” Opt. Laser Technol. 29, 455–461 (1998).
[CrossRef]

Wang, Y.

Y. Wang, Y. W. Shi, Y. Matsuura, M. Miyagi, “Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er:YAG laser light,” Opt. Laser Technol. 29, 455–461 (1998).
[CrossRef]

Y. Wang, H. Hiraga, M. Miyagi, A. Inberg, M. Oksman, N. I. Croitoru, “Characterization of copper waveguides for mid-IR radiation with applications in medicine,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 39–45 (1996).
[CrossRef]

Watanabe, Y.

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Fiber Integr. Opt.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, S. Ruschin, “Use of metallic and dielectric films for hollow fibers,” Fiber Integr. Opt. 6, 347–361 (1987).
[CrossRef]

IEEE J. Lightwave Technol.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 126–134 (1984).

J. Opt. Soc. Am. A

Opt. Laser Technol.

M. Osawa, Y. Kato, Y. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Y. Wang, Y. W. Shi, Y. Matsuura, M. Miyagi, “Small-bore fluorocarbon polymer-coated silver hollow glass waveguides for Er:YAG laser light,” Opt. Laser Technol. 29, 455–461 (1998).
[CrossRef]

Opt. Lett.

Other

J. A. Harrington, ed., Selected Papers on Infrared Fiber Optics, Vol. MS-9 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1990).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, New York, 1991).

D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).

A. Inberg, M. Oksman, N. I. Croitoru, “Novel copper hollow waveguides for IR laser radiation,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 28–38 (1996).
[CrossRef]

Y. Wang, H. Hiraga, M. Miyagi, A. Inberg, M. Oksman, N. I. Croitoru, “Characterization of copper waveguides for mid-IR radiation with applications in medicine,” in Biomedical Systems and Technologies, N. I. Croitoru, M. Frenz, T. A. King, R. Pratesi, A. M. Scheggi, S. Seeger, O. S. Wolfbeis, eds., Proc. SPIE2928, 39–45 (1996).
[CrossRef]

H. O. Pierson, Handbook of Chemical Vapor Deposition (Noyes, Park Ridge, Ill., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured loss spectra of Cu2O/Ag-coated hollow waveguides fabricated at two temperatures. The bore sizes are 700 µm, and the lengths are 15 cm. The waveguides were excited by a Gaussian beam with a large divergence angle of 12°.

Fig. 2
Fig. 2

Loss spectra of Cu2O/Ag-coated hollow waveguides with three thicknesses of Cu2O film. The bore sizes are 700 µm, and the lengths are 15 cm. The excitation conditions of the waveguides are the same as for Fig. 1.

Fig. 3
Fig. 3

Loss spectra of Cu2O/Ag-coated and Ag-coated hollow waveguides. The bore sizes are 700 µm, and the lengths are 50 cm. The excitation conditions of the waveguides are the same as for Fig. 1.

Metrics