Abstract

We analyze and demonstrate a passive single-mode fiber depolarizer by using cascaded 2 × 2 couplers, recirculating delay lines, and a commercial laser diode. Design criteria and principles are discussed. We reduced the degree of polarization (DOP) to less than 20 dB by using ten cascaded couplers. The DOP can be reduced even further with more couplers. Experiments illustrate that this depolarizer is insensitive to the input polarization state and can eliminate polarization noise in a polarization-sensitive fiber-optic system.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, “Polarization characteristics in long-length V.A.D. single mode fibers,” Electron. Lett. 16, 768–769 (1980).
    [CrossRef]
  2. J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
    [CrossRef]
  3. R. C. Alferness, L. L. Buhl, “Waveguide electro-optic polarization transformer,” Appl. Phys. Lett. 38, 655–657 (1981).
    [CrossRef]
  4. H. C. Lefevre, “Single-mode fiber fractional wave de-vices and polarization controllers,” Electron. Lett. 16, 778–780 (1980).
    [CrossRef]
  5. M. A. Santoro, C. D. Poole, “Polarization scrambling using a short piece of high-birefringence optical fiber and a multifrequency laser diode,” J. Lightwave Technol. 12, 288–293 (1994).
    [CrossRef]
  6. W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1, 475–478 (1983).
    [CrossRef]
  7. A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optics and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
    [CrossRef]
  8. P.-Y. Chien, C.-L. Pan, “Fiber-optic gyroscopes based on polarization scrambling,” Opt. Lett. 16, 189–190 (1991).
    [PubMed]
  9. P. Shen, J. C. Palais, “New single-mode fiber polarization scrambler,” Opt. Fiber Technol. 3, 184–188 (1997).
    [CrossRef]
  10. P. Shen, J. C. Palais, C. Lin, “Tunable single-mode fiber depolarizer,” Electron. Lett. 33, 1077–1088 (1997).
    [CrossRef]
  11. P. Shen, J. C. Palais, C. Lin, “Fiber recirculating delay-line tunable depolarizer,” Appl. Opt. 37, 443–448 (1998).
    [CrossRef]
  12. A. J. Barlow, “Optical-fiber birefringence measurement using a photoelastic modulator,” J. Lightwave Technol. 3, 135–144 (1985).
    [CrossRef]
  13. D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
    [CrossRef]
  14. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5, Appendix B.
  15. K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
    [CrossRef]

1998 (1)

1997 (2)

P. Shen, J. C. Palais, “New single-mode fiber polarization scrambler,” Opt. Fiber Technol. 3, 184–188 (1997).
[CrossRef]

P. Shen, J. C. Palais, C. Lin, “Tunable single-mode fiber depolarizer,” Electron. Lett. 33, 1077–1088 (1997).
[CrossRef]

1994 (1)

M. A. Santoro, C. D. Poole, “Polarization scrambling using a short piece of high-birefringence optical fiber and a multifrequency laser diode,” J. Lightwave Technol. 12, 288–293 (1994).
[CrossRef]

1991 (2)

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

P.-Y. Chien, C.-L. Pan, “Fiber-optic gyroscopes based on polarization scrambling,” Opt. Lett. 16, 189–190 (1991).
[PubMed]

1986 (2)

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

1985 (1)

A. J. Barlow, “Optical-fiber birefringence measurement using a photoelastic modulator,” J. Lightwave Technol. 3, 135–144 (1985).
[CrossRef]

1983 (1)

W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1, 475–478 (1983).
[CrossRef]

1981 (1)

R. C. Alferness, L. L. Buhl, “Waveguide electro-optic polarization transformer,” Appl. Phys. Lett. 38, 655–657 (1981).
[CrossRef]

1980 (2)

H. C. Lefevre, “Single-mode fiber fractional wave de-vices and polarization controllers,” Electron. Lett. 16, 778–780 (1980).
[CrossRef]

K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, “Polarization characteristics in long-length V.A.D. single mode fibers,” Electron. Lett. 16, 768–769 (1980).
[CrossRef]

Alferness, R. C.

R. C. Alferness, L. L. Buhl, “Waveguide electro-optic polarization transformer,” Appl. Phys. Lett. 38, 655–657 (1981).
[CrossRef]

Barlow, A. J.

A. J. Barlow, “Optical-fiber birefringence measurement using a photoelastic modulator,” J. Lightwave Technol. 3, 135–144 (1985).
[CrossRef]

Buhl, L. L.

R. C. Alferness, L. L. Buhl, “Waveguide electro-optic polarization transformer,” Appl. Phys. Lett. 38, 655–657 (1981).
[CrossRef]

Burns, W. K.

W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1, 475–478 (1983).
[CrossRef]

Chien, P.-Y.

Dandridge, A.

A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optics and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
[CrossRef]

Day, G. W.

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

Edahiro, T.

K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, “Polarization characteristics in long-length V.A.D. single mode fibers,” Electron. Lett. 16, 768–769 (1980).
[CrossRef]

Etzel, S. M.

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

Kawachi, M.

K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, “Polarization characteristics in long-length V.A.D. single mode fibers,” Electron. Lett. 16, 768–769 (1980).
[CrossRef]

Kersey, A. D.

A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optics and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
[CrossRef]

Kliger, D. S.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5, Appendix B.

Lefevre, H. C.

H. C. Lefevre, “Single-mode fiber fractional wave de-vices and polarization controllers,” Electron. Lett. 16, 778–780 (1980).
[CrossRef]

Lewis, J. W.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5, Appendix B.

Lin, C.

P. Shen, J. C. Palais, C. Lin, “Fiber recirculating delay-line tunable depolarizer,” Appl. Opt. 37, 443–448 (1998).
[CrossRef]

P. Shen, J. C. Palais, C. Lin, “Tunable single-mode fiber depolarizer,” Electron. Lett. 33, 1077–1088 (1997).
[CrossRef]

Marrone, M. J.

A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optics and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
[CrossRef]

Miya, T.

K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, “Polarization characteristics in long-length V.A.D. single mode fibers,” Electron. Lett. 16, 768–769 (1980).
[CrossRef]

Noda, J.

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

Noka, J.

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

Okamoto, K.

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, “Polarization characteristics in long-length V.A.D. single mode fibers,” Electron. Lett. 16, 768–769 (1980).
[CrossRef]

Palais, J. C.

P. Shen, J. C. Palais, C. Lin, “Fiber recirculating delay-line tunable depolarizer,” Appl. Opt. 37, 443–448 (1998).
[CrossRef]

P. Shen, J. C. Palais, “New single-mode fiber polarization scrambler,” Opt. Fiber Technol. 3, 184–188 (1997).
[CrossRef]

P. Shen, J. C. Palais, C. Lin, “Tunable single-mode fiber depolarizer,” Electron. Lett. 33, 1077–1088 (1997).
[CrossRef]

Pan, C.-L.

Poole, C. D.

M. A. Santoro, C. D. Poole, “Polarization scrambling using a short piece of high-birefringence optical fiber and a multifrequency laser diode,” J. Lightwave Technol. 12, 288–293 (1994).
[CrossRef]

Randall, C. E.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5, Appendix B.

Rose, A. H.

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

Santoro, M. A.

M. A. Santoro, C. D. Poole, “Polarization scrambling using a short piece of high-birefringence optical fiber and a multifrequency laser diode,” J. Lightwave Technol. 12, 288–293 (1994).
[CrossRef]

Sasaki, Y.

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, “Polarization characteristics in long-length V.A.D. single mode fibers,” Electron. Lett. 16, 768–769 (1980).
[CrossRef]

Shen, P.

P. Shen, J. C. Palais, C. Lin, “Fiber recirculating delay-line tunable depolarizer,” Appl. Opt. 37, 443–448 (1998).
[CrossRef]

P. Shen, J. C. Palais, “New single-mode fiber polarization scrambler,” Opt. Fiber Technol. 3, 184–188 (1997).
[CrossRef]

P. Shen, J. C. Palais, C. Lin, “Tunable single-mode fiber depolarizer,” Electron. Lett. 33, 1077–1088 (1997).
[CrossRef]

Takada, K.

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

Tang, D.

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. C. Alferness, L. L. Buhl, “Waveguide electro-optic polarization transformer,” Appl. Phys. Lett. 38, 655–657 (1981).
[CrossRef]

Electron. Lett. (3)

H. C. Lefevre, “Single-mode fiber fractional wave de-vices and polarization controllers,” Electron. Lett. 16, 778–780 (1980).
[CrossRef]

K. Okamoto, Y. Sasaki, T. Miya, M. Kawachi, T. Edahiro, “Polarization characteristics in long-length V.A.D. single mode fibers,” Electron. Lett. 16, 768–769 (1980).
[CrossRef]

P. Shen, J. C. Palais, C. Lin, “Tunable single-mode fiber depolarizer,” Electron. Lett. 33, 1077–1088 (1997).
[CrossRef]

J. Lightwave Technol. (6)

K. Takada, K. Okamoto, J. Noda, “New fiber-optic depolarizer,” J. Lightwave Technol. 4, 213–219 (1986).
[CrossRef]

J. Noka, K. Okamoto, Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
[CrossRef]

A. J. Barlow, “Optical-fiber birefringence measurement using a photoelastic modulator,” J. Lightwave Technol. 3, 135–144 (1985).
[CrossRef]

D. Tang, A. H. Rose, G. W. Day, S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: application to optical fiber current sensors,” J. Lightwave Technol. 9, 1031–1037 (1991).
[CrossRef]

M. A. Santoro, C. D. Poole, “Polarization scrambling using a short piece of high-birefringence optical fiber and a multifrequency laser diode,” J. Lightwave Technol. 12, 288–293 (1994).
[CrossRef]

W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. 1, 475–478 (1983).
[CrossRef]

Opt. Fiber Technol. (1)

P. Shen, J. C. Palais, “New single-mode fiber polarization scrambler,” Opt. Fiber Technol. 3, 184–188 (1997).
[CrossRef]

Opt. Lett. (1)

Other (2)

A. D. Kersey, A. Dandridge, M. J. Marrone, “Single-mode fiber pseudo-depolarizer,” in Fiber Optics and Laser Sensors V, R. P. DePaula, E. Udd, eds., Proc. SPIE838, 360–364 (1987).
[CrossRef]

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990), Chap. 5, Appendix B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fiber-ring delay line.

Fig. 2
Fig. 2

Passive fiber depolarizer and setup for measuring its sensitivity to the input polarization state: LD, laser diode; P, polarizer; O, objective lens; PC, polarization controller; A, analyzer; PD, photodetector.

Fig. 3
Fig. 3

Results of the test of input polarization state sensitivity: (a) polarization fluctuation of the single-mode fiber, (b)–(k) polarization fluctuation at the output of each stage of the cascaded fiber-ring depolarizer from stages 1 through 10, respectively.

Fig. 4
Fig. 4

Measurement of the DOP of the passive fiber depolarizer: LD, laser diode; P, polarizer; O, objective lens; C, compensator; A, analyzer; PM, optical power meter.

Fig. 5
Fig. 5

Measurement of the polarization noise in a single-mode fiber, polarization-sensitive system: LD, laser diode; P, polarizer; O, objective lens; PC, polarization controller; SMF, single-mode fiber: A, analyzer; PD, photodetector.

Fig. 6
Fig. 6

Results of polarization noise measurements: (a) polarization noise of a single-mode fiber system, (b)–(k) polarization noise for the depolarizer having 1–10 stages, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Rlδl, θ=expiδl/2cos2θ+exp-iδl/2sin2θ2i sinθcosθsinδl/22i sinθcosθsinδl/2exp-iδl/2cos2θ+expiδl/2sin2θ,
Rcδc=cosδc2sinδc2-sinδc2cosδc2,
Ee=E0+E1+E2++En,
Ei=ExEyT,  Kc=k00k,  Kd=1-k1/2001-k1/2,
E0=KdEi,  E1=KcJKcEi,  E2=KcJKdJKcEi,  E3=KcJKdJKdJKcEi,    En=KcJKdn-1JKcEi,
Ie=Ee·Ee=|Ee|2=|E0|2+|E1|2+|E2|2++|En|2=Ii.
1Ee=n=01En = 1E0 + 1E1 + 1E2 +  1E,  2Ee = 2E00 + 2E01 + 2E02 +  + 2E10 + 2E11 + 2E12 +  + 2E20 + 2E21 + 2E22 +  ,  3Ee = 3E000 + 3E001 + 3E002 +  + 3E010 + 3E011 + 3E012 +  + 3E020 + 3E021 + 3E022  + 3E100 + 3E101 + 3E102 +  + 3E110 + 3E111 + 3E112  + 3E120 + 3E121 + 3E122  + 3E200 + 3E201 + 3E202 +  + 3E210 + 3E211 + 3E212   + 3E220 + 3E221 + 3E222 + ,  lEe=n=0lEn,
lIe=lEe·lEe=|lEe|2=Ii.
DOPdB =10 logImaxε, θa-Iminε, θaImaxε, θa+Iminε, θa,

Metrics