Abstract

An optical technique is described that determines the path-averaged value of a refractive-index structure parameter at 10.6 µm by use of a pulsed coherent CO2 lidar in direct detection and hard-target returns. The lidar measurements are compared with measurements taken by a 0.9-µm scintillometer and temperature probe (with humidity corrections). The experimental results show good agreement for C n 2 ≥ 10-14 m-2/3. With respect to practical applications the new technique permits C n 2 lidar measurements in a neutral meteorological situation to an unstably stratified convective boundary layer over long ranges (1 km or more).

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hill, S. F. Clifford, R. S. Lawrence, “Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations,” J. Opt. Soc. Am. 70, 1192–1205 (1980).
    [CrossRef]
  2. E. L. Andreas, “Two-wavelength method of measuring path-averaged turbulent surface heat fluxes,” J. Atmos. Oceanic Technol. 6, 280–292 (1989).
    [CrossRef]
  3. M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
    [CrossRef]
  4. P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
    [CrossRef]
  5. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
    [CrossRef]
  6. R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
    [CrossRef]
  7. R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
    [CrossRef]
  8. R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
    [CrossRef]
  9. R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
    [CrossRef]
  10. P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998).
    [CrossRef]
  11. P. Delville, X. Favreau, C. Loth, P. H. Flamant, P. Salamitou, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 135–138.
  12. A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
    [CrossRef] [PubMed]
  13. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. A 4, 367–373 (1987).
    [CrossRef]
  14. N. Sugimoto, K. P. Chan, D. K. Killinger, “Optimal heterodyne detector array size for 1-µm coherent lidar propagation through atmospheric turbulence,” Appl. Opt. 30, 2609–2616 (1991).
    [CrossRef] [PubMed]
  15. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–75.
  16. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
    [CrossRef] [PubMed]
  17. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).
  18. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
    [CrossRef]
  19. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981).
    [CrossRef] [PubMed]
  20. B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981).
    [CrossRef]
  21. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986).
    [CrossRef]
  22. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986).
    [CrossRef]
  23. R. G. Frehlich, “Space–time fourth moment of waves propagating in random media,” Radio Sci. 22, 481–490 (1987).
    [CrossRef]
  24. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of pulsed coherent lidars. 1: Theory; 2: Applications,” Appl. Opt. 29, 4111–4132 (1990).
    [CrossRef] [PubMed]
  25. P. Salamitou, F. Darde, P. H. Flamant, “A semianalytic approach for coherent laser radar system efficiency, the nearest Gaussian approximation,” J. Mod. Opt. 41, 2101–2113 (1994).
    [CrossRef]
  26. G. R. Ochs, W. D. Cartwright, “An optical device for path-averaged measurements of Cn2,” in Atmospheric Transmission, R. W. Fenn, ed., Proc. SPIE277, 2–5 (1981).
    [CrossRef]
  27. F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988).
    [CrossRef]
  28. J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
    [CrossRef]
  29. J. C. Wyngaard, M. A. LeMone, “Behavior of the refractive-index structure parameter in the entraining convective boundary layer,” J. Atmos. Sci. 37, 1573–1585 (1980).
    [CrossRef]
  30. W. Kohsiek, “A comparison between line-averaged observation of Cn2 from scintillation of a CO2 laser beam and time-averaged in-situ observations,” J. Climate Appl. Meteorol. 24, 1099–1103 (1985).
    [CrossRef]

1998 (1)

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

1997 (1)

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

1996 (1)

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

1995 (1)

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

1994 (2)

A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
[CrossRef] [PubMed]

P. Salamitou, F. Darde, P. H. Flamant, “A semianalytic approach for coherent laser radar system efficiency, the nearest Gaussian approximation,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

1993 (1)

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

1991 (2)

1990 (1)

1989 (2)

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

E. L. Andreas, “Two-wavelength method of measuring path-averaged turbulent surface heat fluxes,” J. Atmos. Oceanic Technol. 6, 280–292 (1989).
[CrossRef]

1988 (2)

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988).
[CrossRef]

1987 (2)

R. G. Frehlich, “Space–time fourth moment of waves propagating in random media,” Radio Sci. 22, 481–490 (1987).
[CrossRef]

G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. A 4, 367–373 (1987).
[CrossRef]

1986 (3)

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986).
[CrossRef]

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986).
[CrossRef]

M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

1985 (1)

W. Kohsiek, “A comparison between line-averaged observation of Cn2 from scintillation of a CO2 laser beam and time-averaged in-situ observations,” J. Climate Appl. Meteorol. 24, 1099–1103 (1985).
[CrossRef]

1981 (2)

1980 (2)

R. J. Hill, S. F. Clifford, R. S. Lawrence, “Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations,” J. Opt. Soc. Am. 70, 1192–1205 (1980).
[CrossRef]

J. C. Wyngaard, M. A. LeMone, “Behavior of the refractive-index structure parameter in the entraining convective boundary layer,” J. Atmos. Sci. 37, 1573–1585 (1980).
[CrossRef]

1979 (1)

H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
[CrossRef]

1972 (1)

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Ancellet, G. M.

Andreas, E. L.

E. L. Andreas, “Two-wavelength method of measuring path-averaged turbulent surface heat fluxes,” J. Atmos. Oceanic Technol. 6, 280–292 (1989).
[CrossRef]

Anlauf, K. G.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Asimakopulos, D. N.

F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988).
[CrossRef]

Banta, R. M.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

Biesenthal, T.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Bottenheim, J. W.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Brown, R. A.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Cartwright, W. D.

G. R. Ochs, W. D. Cartwright, “An optical device for path-averaged measurements of Cn2,” in Atmospheric Transmission, R. W. Fenn, ed., Proc. SPIE277, 2–5 (1981).
[CrossRef]

Chan, K. P.

Clifford, S. F.

Codona, J. L.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986).
[CrossRef]

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986).
[CrossRef]

Cole, R. S.

F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988).
[CrossRef]

Coté, O. R.

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Creamer, D. B.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986).
[CrossRef]

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986).
[CrossRef]

Cupp, R. E.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Dabas, A.

Darde, F.

P. Salamitou, F. Darde, P. H. Flamant, “A semianalytic approach for coherent laser radar system efficiency, the nearest Gaussian approximation,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

Delville, P.

P. Delville, X. Favreau, C. Loth, P. H. Flamant, P. Salamitou, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 135–138.

Drobinski, P.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Eberhard, W. L.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

Favreau, X.

P. Delville, X. Favreau, C. Loth, P. H. Flamant, P. Salamitou, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 135–138.

Flamant, P. H.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
[CrossRef] [PubMed]

P. Salamitou, F. Darde, P. H. Flamant, “A semianalytic approach for coherent laser radar system efficiency, the nearest Gaussian approximation,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

P. Delville, X. Favreau, C. Loth, P. H. Flamant, P. Salamitou, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 135–138.

Flatté, S. M.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986).
[CrossRef]

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986).
[CrossRef]

Frehlich, R. G.

R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991).
[CrossRef] [PubMed]

R. G. Frehlich, “Space–time fourth moment of waves propagating in random media,” Radio Sci. 22, 481–490 (1987).
[CrossRef]

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986).
[CrossRef]

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986).
[CrossRef]

Gallant, A.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–75.

Gudiksen, P. H.

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

Hardesty, R. M.

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of pulsed coherent lidars. 1: Theory; 2: Applications,” Appl. Opt. 29, 4111–4132 (1990).
[CrossRef] [PubMed]

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Healy, K. R.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

Helmis, C. G.

F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988).
[CrossRef]

Henyey, F. S.

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986).
[CrossRef]

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986).
[CrossRef]

Hill, R. J.

Izumi, Y.

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Jayasuriya, D. A. R.

F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988).
[CrossRef]

Kaimal, J. C.

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Kavaya, M. J.

Killinger, D. K.

Kohsiek, W.

W. Kohsiek, “A comparison between line-averaged observation of Cn2 from scintillation of a CO2 laser beam and time-averaged in-situ observations,” J. Climate Appl. Meteorol. 24, 1099–1103 (1985).
[CrossRef]

Lange, R.

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

Lawrence, R. S.

LeMone, M. A.

J. C. Wyngaard, M. A. LeMone, “Behavior of the refractive-index structure parameter in the entraining convective boundary layer,” J. Atmos. Sci. 37, 1573–1585 (1980).
[CrossRef]

Levinson, D. H.

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

Loth, C.

P. Delville, X. Favreau, C. Loth, P. H. Flamant, P. Salamitou, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 135–138.

McKendry, I. G.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Medeiros, F. C.

F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988).
[CrossRef]

Menzies, R. T.

Neff, W. D.

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

Neiman, P. J.

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Ochs, G. R.

G. R. Ochs, W. D. Cartwright, “An optical device for path-averaged measurements of Cn2,” in Atmospheric Transmission, R. W. Fenn, ed., Proc. SPIE277, 2–5 (1981).
[CrossRef]

Olivier, L. D.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

Pelon, J.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Post, M. J.

Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of pulsed coherent lidars. 1: Theory; 2: Applications,” Appl. Opt. 29, 4111–4132 (1990).
[CrossRef] [PubMed]

M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

Ruffieux, D.

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

Rye, B. J.

Salamitou, P.

A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler lidar with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
[CrossRef] [PubMed]

P. Salamitou, F. Darde, P. H. Flamant, “A semianalytic approach for coherent laser radar system efficiency, the nearest Gaussian approximation,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

P. Delville, X. Favreau, C. Loth, P. H. Flamant, P. Salamitou, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 135–138.

Shapiro, M. A.

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Shepson, P. B.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Steyn, D. G.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Sugimoto, N.

Tatarskii, V. I.

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).

Wandzura, S.

Wiebe, H. A.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Wyngaard, J. C.

J. C. Wyngaard, M. A. LeMone, “Behavior of the refractive-index structure parameter in the entraining convective boundary layer,” J. Atmos. Sci. 37, 1573–1585 (1980).
[CrossRef]

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Yura, H. T.

H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
[CrossRef]

Zhao, Y.

Zhu, C. J.

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Appl. Opt. (5)

Atmos. Environ. (1)

R. M. Banta, P. B. Shepson, J. W. Bottenheim, K. G. Anlauf, H. A. Wiebe, A. Gallant, T. Biesenthal, L. D. Olivier, C. J. Zhu, I. G. McKendry, D. G. Steyn, “Nocturnal cleansing flows in a tributary valley,” Atmos. Environ. 31, 2147–2162 (1997).
[CrossRef]

Boundary Layer Meteorol. (1)

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

M. J. Post, W. D. Neff, “Doppler lidar measurements of winds in a narrow mountain valley,” Bull. Am. Meteorol. Soc. 67, 274–281 (1986).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Banta, L. D. Olivier, P. H. Gudiksen, R. Lange, “Implications of small-scale flow features to modeling dispersion over complex terrain,” J. Appl. Meteorol. 35, 330–342 (1996).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

E. L. Andreas, “Two-wavelength method of measuring path-averaged turbulent surface heat fluxes,” J. Atmos. Oceanic Technol. 6, 280–292 (1989).
[CrossRef]

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

J. Atmos. Sci. (2)

R. M. Banta, L. D. Olivier, D. H. Levinson, “Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar,” J. Atmos. Sci. 50, 3959–3982 (1993).
[CrossRef]

J. C. Wyngaard, M. A. LeMone, “Behavior of the refractive-index structure parameter in the entraining convective boundary layer,” J. Atmos. Sci. 37, 1573–1585 (1980).
[CrossRef]

J. Climate Appl. Meteorol. (1)

W. Kohsiek, “A comparison between line-averaged observation of Cn2 from scintillation of a CO2 laser beam and time-averaged in-situ observations,” J. Climate Appl. Meteorol. 24, 1099–1103 (1985).
[CrossRef]

J. Math. Phys. (1)

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Moment-equation and path-integral techniques for wave propagation in random media,” J. Math. Phys. 27, 171–177 (1986).
[CrossRef]

J. Mod. Opt. (1)

P. Salamitou, F. Darde, P. H. Flamant, “A semianalytic approach for coherent laser radar system efficiency, the nearest Gaussian approximation,” J. Mod. Opt. 41, 2101–2113 (1994).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Meteorol. Atmos. Phys. (1)

F. C. Medeiros, D. A. R. Jayasuriya, R. S. Cole, C. G. Helmis, D. N. Asimakopulos, “Correlated humidity and temperature measurements in the urban atmospheric boundary layer,” Meteorol. Atmos. Phys. 39, 197–202 (1988).
[CrossRef]

Mon. Weather Rev. (1)

P. J. Neiman, R. M. Hardesty, M. A. Shapiro, R. E. Cupp, “Doppler lidar observations of a downslope windstorm,” Mon. Weather Rev. 116, 2265–2275 (1988).
[CrossRef]

Opt. Acta (1)

H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Coté, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972).
[CrossRef]

Radio Sci. (2)

J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986).
[CrossRef]

R. G. Frehlich, “Space–time fourth moment of waves propagating in random media,” Radio Sci. 22, 481–490 (1987).
[CrossRef]

Theor. Appl. Climatol. (1)

R. M. Banta, L. D. Olivier, W. D. Neff, D. H. Levinson, D. Ruffieux, “Influence of canyon-induced flows on flow and dispersion over adjacent plains,” Theor. Appl. Climatol. 52, 27–42 (1995).
[CrossRef]

Other (4)

P. Delville, X. Favreau, C. Loth, P. H. Flamant, P. Salamitou, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of Ninth Conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 135–138.

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, Jerusalem, 1971).

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–75.

G. R. Ochs, W. D. Cartwright, “An optical device for path-averaged measurements of Cn2,” in Atmospheric Transmission, R. W. Fenn, ed., Proc. SPIE277, 2–5 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Dependence of the number of speckle cells m on S/S c , which is the ratio of receiver area S to coherent area S c , for two different lidar geometries. The analytical equation derived by Goodman [Eq. (4)] is shown as a solid curve (square detector and constant quantum yield), and the dashed curve represents m = 1 + S/S c [Eq. (5)] (Gaussian detector and quantum yield).

Fig. 2
Fig. 2

Schematic of TE CO2 lidar.

Fig. 3
Fig. 3

Simulated laser beam shapes (a) in the near field and (b) at target range R = 1690 m in the far field. The beam shape is super-Gaussian in the near field, whereas at range R = 1690 m it is Gaussian with a 1/e intensity radius of 9.2 cm. (a) The circles are measurements of the true beam shape, and the solid curve is the best fit; (b) the circles result from the computations, and the solid curve is the best fit.

Fig. 4
Fig. 4

Expected relative accuracy for lidar C n 2 measurements as a function of the true atmospheric C n 2 according to the experimental setup.

Fig. 5
Fig. 5

Example of lidar measurement. With the circles are displayed the numbers of speckles m measured for the various apertures or sensitive areas S n . The solid curve is the best fit of (S) = 1 + S/S c , providing an estimate of the coherence area S c of 2430 mm2 corresponding to C n 2 = 1.7 × 10-13 m-2/3. According to Fig. 4 the relative uncertainty is then ∼4.5%.

Fig. 6
Fig. 6

Measurements collected on 17 June 1997: (a) visible solar insolation; (b) C n 2 measurements. Lidar measurements are shown by circles. The thick solid curve is for a NOAA 0.9-µm scintillometer. The dotted and thin solid curves were derived from in situ (temperature and humidity) measurements at 0.9 µm (dotted curve) (compared with scintillometer data) and at 10.6 µm (thin solid curve) (compared with lidar data).

Fig. 7
Fig. 7

Measurements collected on 23 April 1997: (a) visible solar insolation; (b) C n 2 measurements. Circles, lidar measurements; thick solid curve, NOAA 0.9-µm scintillometer measurements.

Fig. 8
Fig. 8

Scatter diagram of the scintillometer and in situ C n 2 measurements versus lidar measurements.

Fig. 9
Fig. 9

Scatter diagram of the scintillometer and in situ C n 2 measurements versus lidar measurements. C n 2 measurements are averaged over the whole observation time period.

Tables (1)

Tables Icon

Table 1 Cn 2 Measurement and Accuracy for Different Atmospheric Conditions

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

pi=mmΓmim-1i exp-m ii,
m=S μx, xWxdxS μy, yWydyS |μx, y|2WxWydxdy,
Sc=S μx, ydxdy
m=ScS1/2 erfπSSc1/2-ScπS1-exp-πSSc-2.
m=1+SSc.
Sc=πr˜022,
1r˜02=k2σ˜B24R2+12ρ02.
ρ0=Hk20R Cn2z1-zR5/3dz-3/5,
σ˜B2=σB2+2R2k2ρ02,
1r˜02=1r02+1ρ02,
ρ0=0.118Hk2Cn2R-3/5.
m=i2σi2,
mˆ=M-1MM k=1M ik2k=1M ik2-1-1,
Sˆc-1=n=1NmˆSn-1Snn=1N Sn2.
δCn2Cn20.31+2ρ02r02δScSc.
δSc2Sc2n=1N Sn2δmˆSn2n=1N SnmˆSn-12.
δSc2Sc22Mn=1NSn/Sc21+Sn/Sc2n=1NSn/Sc22.
n=1N+1Sn/Sc21+Sn/Sc2n=1N+1Sn/Sc22n=1NSn/Sc21+Sn/Sc2n=1NSn/Sc22.
Cn2=AT2CT2+2AQATCTQ+AQ2CQ2.
CT2=13.62STfffU¯2/3,  CQ2=13.62SQfffU¯2/3,  CTQ=13.62STQfffU¯2/3,
Cn2=4.48σx2D7/3L-3,

Metrics