Abstract

We use radiative perturbation theory to develop a retrieval technique for determining the radiative properties of a scattering medium, such as the Earth’s atmosphere, based on measurements of the radiation emerging at either the top or bottom of the medium. In a previous paper [J. Quant. Spectrosc. Radiat. Transfer 54, 695 (1995)] we have shown the capacity of radiative perturbation theory to describe variations in exiting intensity as a linear combination of the parameters that characterize the scattering medium. Here we show that it is possible to set up a matrix relation such that the matrix inversion solves the inverse scattering problem. Using simulated data, we observe that the quality of the solution can be controlled by studying the singular values associated with the kernel matrix, obtaining in this way a stable solution, even in the presence of noise.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (9)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription