Abstract

We report a fully automated mid-IR difference-frequency spectrometer with a spectral resolution under 70 MHz pumped by a pair of conventional room-temperature 800–900-nm diode lasers. 0.1 µW of tunable cw radiation is produced from incident-diode powers of 120 and 75 mW. The system has computer-controlled beam alignment with compact CCD cameras, motorized mirrors and positioners to obtain 0.01° crystal-angle positioning, 4-µm beam overlap at the nonlinear crystal, and automated diode laser beam collimation. Computer-operated frequency control uses temperature tuning and current tuning of the free-running diode lasers. The system has been demonstrated by successfully scanning, without any human intervention, 64 randomly selected acetylene absorption lines between 12 and 15 µm. Spectral scans of ammonia are also presented. This mid-IR spectrometer is suitable for fully automated spectroscopy of an unlimited list of mid-IR frequencies and has the potential to detect any trace gas that has an acceptable absorption line within the large tuning range.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural,” in Biogenic Trace Gases: Measurement Emissions from Soil and Water, P. A. Watson, R. C. Harriss, eds. (Blackwell Science, Oxford, U.K., 1995), pp. 259–290.
  2. D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. E. Hester, R. S. Clark, eds., Vol. 24 of Advances in Spectroscopy Series (Wiley, New York, 1995).
  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  4. R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
    [CrossRef]
  5. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
    [CrossRef]
  6. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef] [PubMed]
  7. A. S. Pine, “Doppler-limited molecular spectroscopy by difference-frequency mixing,” J. Opt. Soc. Am. 64, 1683–1690 (1974).
    [CrossRef]
  8. U. Simon, F. K. Tittel, L. Goldberg, “Difference-frequency mixing in AgGaS2 by use of a high-power GaAlAs tapered semiconductor amplifier at 860 nm,” Opt. Lett. 18, 1931–1933 (1993).
    [CrossRef] [PubMed]
  9. R. S. Putnam, “Diode laser difference frequency detects ammonia and chlorofluorocarbons at 11.5 microns,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 13–14.
  10. R. S. Putnam, “Applying room temperature diode lasers to difference frequency generation,” in Intracavity and Extracavity Control of Laser Beam Properties, R. L. Facklam, K. H. Guenther, S. P. Velsko, eds., Proc. SPIE1869, 242–249 (1993).
    [CrossRef]
  11. U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single mode diode laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
    [CrossRef]
  12. K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, F. K. Tittel, “Detection of CO in air by diode-pumped 4.6-µm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett. 21, 86–88 (1996).
    [CrossRef] [PubMed]
  13. N. C. Fernelius, “Properties of gallium selenide single crystal,” Prog. Cryst. Growth Charact. 28, 275–353 (1994).
  14. A. E. Siegman, Handbook of Nonlinear Optical Crystals, ed., (Springer-Verlag, New York, 1991), pp. 87–88.
  15. D. R. Suhre, N. B. Singh, V. Balakrishna, N. C. Fernelius, F. K. Hopkins, “Improved crystal quality and harmonic generation in GaSe doped with indium,” Opt. Lett. 22, 775–777 (1997).
    [CrossRef] [PubMed]
  16. U. Simon, Z. Benko, M. W. Sigrist, R. F. Curl, F. K. Tittel, “Design considerations of an infrared spectrometer based on difference-frequency generation in AgGaSe2,” Appl. Opt. 32, 6650–6655 (1993).
    [CrossRef] [PubMed]
  17. W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).
  18. Source of GaSe crystal: Eksma Co., Vilnius, Lithuania, eksma@auste.elnet.lt.
  19. J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser measurements of nitrogen oxide species in an aircraft engine exhaust,” in Optical Techniques in Fluid, Thermal, and Combustion Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2546, 552–561 (1995).
    [CrossRef]

1998 (1)

1997 (2)

D. R. Suhre, N. B. Singh, V. Balakrishna, N. C. Fernelius, F. K. Hopkins, “Improved crystal quality and harmonic generation in GaSe doped with indium,” Opt. Lett. 22, 775–777 (1997).
[CrossRef] [PubMed]

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

1996 (3)

1994 (2)

N. C. Fernelius, “Properties of gallium selenide single crystal,” Prog. Cryst. Growth Charact. 28, 275–353 (1994).

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

1993 (3)

1974 (1)

Alexander, J. I.

Balakrishna, V.

Benko, Z.

Bosenberg, W. R.

Bradley, C. C.

Brassington, D. J.

D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. E. Hester, R. S. Clark, eds., Vol. 24 of Advances in Spectroscopy Series (Wiley, New York, 1995).

Burns, W. K.

Byer, R. L.

Cai, S.

Capasso, F.

Cho, A. Y.

Curl, R. F.

Drobshoff, A.

Eckhoff, W. C.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).

Faist, J.

Fernelius, N. C.

Gmachl, C.

Goldberg, L.

Hopkins, F. K.

Hulet, R. G.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Kolb, C. E.

C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural,” in Biogenic Trace Gases: Measurement Emissions from Soil and Water, P. A. Watson, R. C. Harriss, eds. (Blackwell Science, Oxford, U.K., 1995), pp. 259–290.

J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser measurements of nitrogen oxide species in an aircraft engine exhaust,” in Optical Techniques in Fluid, Thermal, and Combustion Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2546, 552–561 (1995).
[CrossRef]

Lin, C.-H.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

McManus, J. B.

J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser measurements of nitrogen oxide species in an aircraft engine exhaust,” in Optical Techniques in Fluid, Thermal, and Combustion Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2546, 552–561 (1995).
[CrossRef]

Miake-Lye, R. C.

J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser measurements of nitrogen oxide species in an aircraft engine exhaust,” in Optical Techniques in Fluid, Thermal, and Combustion Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2546, 552–561 (1995).
[CrossRef]

Miller, C. E.

Murry, S. J.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

Myers, L. E.

Namjou, K.

Nelson, D. D.

J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser measurements of nitrogen oxide species in an aircraft engine exhaust,” in Optical Techniques in Fluid, Thermal, and Combustion Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2546, 552–561 (1995).
[CrossRef]

Pei, S. S.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

Petrov, K. P.

Pine, A. S.

Putnam, R. S.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).

R. S. Putnam, “Diode laser difference frequency detects ammonia and chlorofluorocarbons at 11.5 microns,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 13–14.

R. S. Putnam, “Applying room temperature diode lasers to difference frequency generation,” in Intracavity and Extracavity Control of Laser Beam Properties, R. L. Facklam, K. H. Guenther, S. P. Velsko, eds., Proc. SPIE1869, 242–249 (1993).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Handbook of Nonlinear Optical Crystals, ed., (Springer-Verlag, New York, 1991), pp. 87–88.

Sigrist, M. W.

Simon, U.

Singh, N. B.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

Suhre, D. R.

Tittel, F. K.

Wang, S.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).

Whittaker, E. A.

Wormhoudt, J.

J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser measurements of nitrogen oxide species in an aircraft engine exhaust,” in Optical Techniques in Fluid, Thermal, and Combustion Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2546, 552–561 (1995).
[CrossRef]

Wormhoudt, J. C.

C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural,” in Biogenic Trace Gases: Measurement Emissions from Soil and Water, P. A. Watson, R. C. Harriss, eds. (Blackwell Science, Oxford, U.K., 1995), pp. 259–290.

Wu, H.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

Yang, B. H.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

Yang, R. Q.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

Zahniser, M. S.

C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural,” in Biogenic Trace Gases: Measurement Emissions from Soil and Water, P. A. Watson, R. C. Harriss, eds. (Blackwell Science, Oxford, U.K., 1995), pp. 259–290.

J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser measurements of nitrogen oxide species in an aircraft engine exhaust,” in Optical Techniques in Fluid, Thermal, and Combustion Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2546, 552–561 (1995).
[CrossRef]

Zhang, D.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).

Appl. Phys. Lett. (1)

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type II quantum wells,” Appl. Phys. Lett. 71, 2409–2411 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (6)

Prog. Cryst. Growth Charact. (1)

N. C. Fernelius, “Properties of gallium selenide single crystal,” Prog. Cryst. Growth Charact. 28, 275–353 (1994).

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Other (7)

A. E. Siegman, Handbook of Nonlinear Optical Crystals, ed., (Springer-Verlag, New York, 1991), pp. 87–88.

Source of GaSe crystal: Eksma Co., Vilnius, Lithuania, eksma@auste.elnet.lt.

J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser measurements of nitrogen oxide species in an aircraft engine exhaust,” in Optical Techniques in Fluid, Thermal, and Combustion Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2546, 552–561 (1995).
[CrossRef]

C. E. Kolb, J. C. Wormhoudt, M. S. Zahniser, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural,” in Biogenic Trace Gases: Measurement Emissions from Soil and Water, P. A. Watson, R. C. Harriss, eds. (Blackwell Science, Oxford, U.K., 1995), pp. 259–290.

D. J. Brassington, “Tunable diode laser absorption spectroscopy for the measurement of atmospheric species,” in Spectroscopy in Environmental Science, R. E. Hester, R. S. Clark, eds., Vol. 24 of Advances in Spectroscopy Series (Wiley, New York, 1995).

R. S. Putnam, “Diode laser difference frequency detects ammonia and chlorofluorocarbons at 11.5 microns,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 13–14.

R. S. Putnam, “Applying room temperature diode lasers to difference frequency generation,” in Intracavity and Extracavity Control of Laser Beam Properties, R. L. Facklam, K. H. Guenther, S. P. Velsko, eds., Proc. SPIE1869, 242–249 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimentally measured tuning data for the two diode lasers at the 130-mW power level was recorded from 0 to 40 °C. All possible combinations of the available frequencies were checked, and the number of different pairs found that will produce a given mid-IR frequency is shown in the figure. Hundreds of frequency pairs produced by the two diode lasers are available to produce any desired mid-IR frequency.

Fig. 2
Fig. 2

Optical setup includes two temperature-controlled diode lasers with automated collimation at 809 and 856 nm, eight motorized picomirrors, single-mode fiber coupling, optical isolators, horizontal cylindrical-lens telescopes, three CCD cameras, a polarizing beam splitter (PBS) for combining the drive beams, a motorized rotary mount with a 5-mm GaSe crystal, a deflection mirror on a swing arm, a 25-cm focusing lens, a 5-cm ZnSe mid-IR collimating lens, a 2.5-cm detector focusing lens, an AR-coated Ge filter, and a 10–16-µm HgCdTe (MCT) detector. FP, Fabry–Perot spectrum analyzer.

Fig. 3
Fig. 3

Temperature tuning of a 100-mW diode laser with a pseudo-AR coating on the emitting facet shows hysteresis and randomly appearing mode hops. The hysteresis was removed when the current was momentarily lowered below threshold, which permits the laser to restart: This also permitted reaching several different modes without changing the temperature. The stability of these mode choices was strongly influenced by optical feedback and was controlled by the position of the collimating lens after the laser window was removed.

Fig. 4
Fig. 4

Temperature-tuning characteristic of the 150-mW SDL-5400 diode laser was measured at a constant 130-mW power with the laser momentarily dropped below threshold to restart at each data point. Multiple modes are available at each temperature but nominally run one at a time. Which mode will appear after a current interrupt is random but is influenced by the phase of the field reflected from the collimating lens, which we mechanically control to force the laser to a particular mode. This characterization curve, with 0.2 °C steps, is automatically recorded and is used to find a preferred frequency pair for any required mid-IR frequency.

Fig. 5
Fig. 5

The temperature tuning characteristic of one diode laser is vastly improved by removing the laser window. The SDL-5400 series 150 mW diode lasers have a pseudo AR coating on the emitting facet which increases the influence of reflected optical fields.

Fig. 6
Fig. 6

NH3 spectrum that was produced by combining a set of current-tuned scans, each of which was produced at a different (temperature-tuned) center frequency. The vertical displacements of the scans are intentionally not corrected. The HITRAN-based prediction of the spectra at the top of the figure corresponds well with our measured spectra.

Fig. 7
Fig. 7

Example of a low-pressure acetylene absorption line at 12.4 µm.

Fig. 8
Fig. 8

Mid-IR power generated during the fully automated test of 64 randomly picked acetylene absorption lines shows a general decrease with increasing wavelength that is due to the inverse square wavelength dependence. The vertical scatter reveals the imperfect behavior of the automated power peaking system.

Metrics