Abstract

A new laser technology that achieves nearly 100-nm quasi-continuous tuning with only injection-current control in a four-section grating-coupler sampled-reflector laser was used to detect CO and CO2 simultaneously in room-temperature gas mixtures. The same grating-coupler sampled-reflector laser was used to perform in situ measurements of CO, H2O, and OH in the exhaust gases of a CH4–air flame. This laser is being evaluated for inclusion in a multispecies combustion-emissions exhaust-analysis sensor, and its operational characteristics as they have an impact on gas sensing are described. Preliminary results suggest that this single laser can be used to replace multilaser sensor configurations for some combustion-emissions monitoring applications.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  2. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
    [CrossRef]
  3. E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.
  4. M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996).
    [CrossRef]
  5. M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
    [CrossRef] [PubMed]
  6. D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8 µm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
    [CrossRef]
  7. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor systems for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  8. D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
    [CrossRef] [PubMed]
  9. M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm,” Appl. Phys. B 65, 75–79 (1997).
    [CrossRef]
  10. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
    [CrossRef]
  11. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, M. F. Miller, “In-situ, multi-species combustion sensor using a multi-section diode laser,” paper AIAA 98-0402, presented at the Thirty-Sixth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York1998).
  12. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
    [CrossRef]
  13. A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
    [CrossRef]
  14. W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
    [CrossRef]
  15. B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
    [CrossRef]

1998

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor systems for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

1997

D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8 µm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

1996

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
[CrossRef] [PubMed]

1993

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

Ahlberg, H.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Allen, M. G.

B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8 µm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
[CrossRef] [PubMed]

M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, M. F. Miller, “In-situ, multi-species combustion sensor using a multi-section diode laser,” paper AIAA 98-0402, presented at the Thirty-Sixth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York1998).

Baer, D. S.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor systems for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.

Barrick, J. D.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

Broberg, B.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Corsi, C.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Davis, S. J.

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

Furlong, E. R.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.

Gabrysch, M.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Hanson, R. K.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor systems for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.

Hojer, S.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Inguscio, M.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Ishii, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
[CrossRef]

Kando, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
[CrossRef]

Kano, F.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
[CrossRef]

Kessler, W. J.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
[CrossRef] [PubMed]

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

Larson, A. P.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Magill, J. C.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor systems for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Miller, M. F.

M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
[CrossRef] [PubMed]

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, M. F. Miller, “In-situ, multi-species combustion sensor using a multi-section diode laser,” paper AIAA 98-0402, presented at the Thirty-Sixth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York1998).

Nagali, V.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Newfield, M. E.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Pavone, F. S.

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

Sandstrom, L.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Sonnenfroh, D. M.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

D. M. Sonnenfroh, M. G. Allen, “Observation of CO and CO2 absorption near 1.57 µm with an external-cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997).
[CrossRef] [PubMed]

D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8 µm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997).
[CrossRef]

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, M. F. Miller, “In-situ, multi-species combustion sensor using a multi-section diode laser,” paper AIAA 98-0402, presented at the Thirty-Sixth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York1998).

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
[CrossRef]

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
[CrossRef]

Upschulte, B. L.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, M. F. Miller, “In-situ, multi-species combustion sensor using a multi-section diode laser,” paper AIAA 98-0402, presented at the Thirty-Sixth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York1998).

Yoshikuni, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
[CrossRef]

AIAA J.

M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 483–488 (1996).
[CrossRef]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Gabrysch, C. Corsi, F. S. Pavone, M. Inguscio, “Simultaneous detection of CO and CO2 using a semiconductor DFB diode laser at 1.578 µm,” Appl. Phys. B 65, 75–79 (1997).
[CrossRef]

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser,” Appl. Phys. B 67, 275–282 (1998).
[CrossRef]

IEEE J. Quantum Electron.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kando, Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–440 (1996).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

W. J. Kessler, M. G. Allen, S. J. Davis, “Rotational level-dependent collisional broadening and line shift of the A2Σ+–X2II (1,0) band of OH in hydrogen–air combustion gases,” J. Quant. Spectrosc. Radiat. Transfer 49, 107–117 (1993).
[CrossRef]

B. L. Upschulte, M. G. Allen, “Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 µm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998).
[CrossRef]

Meas. Sci. Technol.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor systems for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Opt. Eng.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Other

E. R. Furlong, D. S. Baer, R. K. Hanson, “Combustion control using a multiplexed diode-laser sensor system,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2851–2858.

B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, M. F. Miller, “In-situ, multi-species combustion sensor using a multi-section diode laser,” paper AIAA 98-0402, presented at the Thirty-Sixth Aerospace Sciences Meeting, Reno, Nev., 12–15 January 1998 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Detailed comparison of predicted CO, CO2, and H2O absorption at 1200 K. The CO spectrum was predicted with HITRAN, and the CO2 and the H2O spectra were predicted with HITEMP.

Fig. 2
Fig. 2

Schematic cross section of the GCSR multisection laser (provided by Industrial Microelectronic Center, Kista, Sweden). SSG, superstructure grating; DBR, distributed Bragg reflector.

Fig. 3
Fig. 3

Example GCSR laser tuning surface (provided by IMC, Kista, Sweden).

Fig. 4
Fig. 4

Absorption spectrum acquired from a single scan of the GCSR laser in a CO2 laser gas mixture.

Fig. 5
Fig. 5

HITEMP–HITRAN predictions of OH and H2O vapor absorption in the 6420-cm-1 region for a flame temperature of 2000 K and equivalence ratios of (a) 1, (b) 1.5.

Fig. 6
Fig. 6

Experimental in situ measurements of the OH overtone absorption near 6420 cm-1.

Fig. 7
Fig. 7

HITEMP–HITRAN prediction of CO and H2O vapor absorption in the 6412-cm-1 region for a flame equivalence ratio of 1.5 and a temperature of 2000 K.

Fig. 8
Fig. 8

Experimental in situ measurements of the CO overtone absorption near 6412 cm-1 at several flame equivalence ratios.

Fig. 9
Fig. 9

Comparison of measured CO number density with predicted equilibrium values for CH4–air flames as a function of the equivalence ratio.

Metrics