Abstract

A laser-desorption mass-spectrometer microprobe has been developed to profile Li distributions on the crevice surfaces of Cr-plated rolled-joint hubs. A single laser pulse is used to desorb and ionize the surface species followed by detection of Li+ in a time-of-flight mass spectrometer. Images of the surface Li distribution are obtained with a resolution of <10 µm. These images are directly compared with Li images from the more conventional secondary ion mass spectrometry technique and evaluated with respect to surface topographical features measured by secondary electron microscopy and atomic force microscopy. The laser-desorption images are shown to provide the same qualitative information as that available from secondary ion mass spectrometry.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Savina, K. R. Lykke, “Microscopic chemical imaging with laser desorption mass spectrometry,” Anal. Chem. 69, 3741–3746 (1997).
    [CrossRef]
  2. J. M. Behm, J. C. Hemminger, K. R. Lykke, “Microscopic laser desorption/postionization Fourier transform mass spectrometry,” Anal. Chem. 68, 713–719 (1996).
    [CrossRef] [PubMed]
  3. R. Zenobi, Q. Zhan, P. Voumard, “Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry,” Mikrochim. Acta 124, 273–281 (1996).
    [CrossRef]
  4. M. S. de Vries, D. J. Elloway, H. R. Wendt, H. E. Hunziker, “Photoionization mass spectrometer with a microscope laser desorption source,” Rev. Sci. Instrum. 63, 3321–3325 (1992).
    [CrossRef]
  5. R. M. Caprioli, T. B. Farmer, J. Gile, “Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS,” Anal. Chem. 69, 4751–4760 (1997).
    [CrossRef] [PubMed]
  6. D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
    [CrossRef] [PubMed]
  7. N. Winograd, “Ion beams and laser postionization for molecule-specific imaging,” Anal. Chem. 65, 622A–629A (1993).
    [CrossRef] [PubMed]
  8. J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.
  9. V. F. Urbanic, G. M. McDougall, A. J. White, A. A. Bahurmuz, “Deuterium ingress at rolled joints in CANDU reactors,” in Proceedings of an International Conference on Expanded and Rolled Joint Technology, E. G. Price, ed. (Canadian Nuclear Society, Toronto, 1993), pp. G18–G45.
  10. Software provided by D. A. Dahl, J. E. Delmore, Idaho National Engineering Laboratory, EG&G Idaho, Inc.
  11. J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).
  12. M. Von Allmen, Laser Beam Interactions With Materials: Physical Principles and Applications (Springer-Verlag, Berlin, 1987).
    [CrossRef]
  13. J. L. Brand, S. M. George, “Effects of laser pulse characteristics and thermal desorption parameters on laser induced thermal desorption,” Surf. Sci. 167, 341–362 (1986).
    [CrossRef]
  14. J.-M. Philippoz, R. Zenobi, R. N. Zare, “Pulsed heating of surfaces: comparison between numerical simulation, analytical models, and experiments,” Chem. Phys. Lett. 158, 12–17 (1989).
    [CrossRef]
  15. G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998).
    [CrossRef]
  16. L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994).
    [CrossRef]
  17. G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
    [CrossRef]

1998 (1)

G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998).
[CrossRef]

1997 (3)

M. R. Savina, K. R. Lykke, “Microscopic chemical imaging with laser desorption mass spectrometry,” Anal. Chem. 69, 3741–3746 (1997).
[CrossRef]

R. M. Caprioli, T. B. Farmer, J. Gile, “Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS,” Anal. Chem. 69, 4751–4760 (1997).
[CrossRef] [PubMed]

D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
[CrossRef] [PubMed]

1996 (2)

J. M. Behm, J. C. Hemminger, K. R. Lykke, “Microscopic laser desorption/postionization Fourier transform mass spectrometry,” Anal. Chem. 68, 713–719 (1996).
[CrossRef] [PubMed]

R. Zenobi, Q. Zhan, P. Voumard, “Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry,” Mikrochim. Acta 124, 273–281 (1996).
[CrossRef]

1994 (2)

L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994).
[CrossRef]

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[CrossRef]

1993 (1)

N. Winograd, “Ion beams and laser postionization for molecule-specific imaging,” Anal. Chem. 65, 622A–629A (1993).
[CrossRef] [PubMed]

1992 (1)

M. S. de Vries, D. J. Elloway, H. R. Wendt, H. E. Hunziker, “Photoionization mass spectrometer with a microscope laser desorption source,” Rev. Sci. Instrum. 63, 3321–3325 (1992).
[CrossRef]

1989 (1)

J.-M. Philippoz, R. Zenobi, R. N. Zare, “Pulsed heating of surfaces: comparison between numerical simulation, analytical models, and experiments,” Chem. Phys. Lett. 158, 12–17 (1989).
[CrossRef]

1986 (1)

J. L. Brand, S. M. George, “Effects of laser pulse characteristics and thermal desorption parameters on laser induced thermal desorption,” Surf. Sci. 167, 341–362 (1986).
[CrossRef]

Allen, T. M.

J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.

Anderson, J. E.

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[CrossRef]

J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.

Bahurmuz, A. A.

V. F. Urbanic, G. M. McDougall, A. J. White, A. A. Bahurmuz, “Deuterium ingress at rolled joints in CANDU reactors,” in Proceedings of an International Conference on Expanded and Rolled Joint Technology, E. G. Price, ed. (Canadian Nuclear Society, Toronto, 1993), pp. G18–G45.

Behm, J. M.

J. M. Behm, J. C. Hemminger, K. R. Lykke, “Microscopic laser desorption/postionization Fourier transform mass spectrometry,” Anal. Chem. 68, 713–719 (1996).
[CrossRef] [PubMed]

Bickel, G. A.

G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998).
[CrossRef]

Brand, J. L.

J. L. Brand, S. M. George, “Effects of laser pulse characteristics and thermal desorption parameters on laser induced thermal desorption,” Surf. Sci. 167, 341–362 (1986).
[CrossRef]

Caprioli, R. M.

R. M. Caprioli, T. B. Farmer, J. Gile, “Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS,” Anal. Chem. 69, 4751–4760 (1997).
[CrossRef] [PubMed]

Causà, M.

L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994).
[CrossRef]

de Vries, M. S.

M. S. de Vries, D. J. Elloway, H. R. Wendt, H. E. Hunziker, “Photoionization mass spectrometer with a microscope laser desorption source,” Rev. Sci. Instrum. 63, 3321–3325 (1992).
[CrossRef]

Eiden, G. C.

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[CrossRef]

Elloway, D. J.

M. S. de Vries, D. J. Elloway, H. R. Wendt, H. E. Hunziker, “Photoionization mass spectrometer with a microscope laser desorption source,” Rev. Sci. Instrum. 63, 3321–3325 (1992).
[CrossRef]

Farmer, T. B.

R. M. Caprioli, T. B. Farmer, J. Gile, “Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS,” Anal. Chem. 69, 4751–4760 (1997).
[CrossRef] [PubMed]

Garrett, A. W.

J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.

George, S. M.

J. L. Brand, S. M. George, “Effects of laser pulse characteristics and thermal desorption parameters on laser induced thermal desorption,” Surf. Sci. 167, 341–362 (1986).
[CrossRef]

Gile, J.

R. M. Caprioli, T. B. Farmer, J. Gile, “Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS,” Anal. Chem. 69, 4751–4760 (1997).
[CrossRef] [PubMed]

Gill, C. G.

J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.

Green, L. W.

G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998).
[CrossRef]

Hemberger, P. H.

J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.

Hemminger, J. C.

J. M. Behm, J. C. Hemminger, K. R. Lykke, “Microscopic laser desorption/postionization Fourier transform mass spectrometry,” Anal. Chem. 68, 713–719 (1996).
[CrossRef] [PubMed]

Hermansson, K.

L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994).
[CrossRef]

Hunziker, H. E.

M. S. de Vries, D. J. Elloway, H. R. Wendt, H. E. Hunziker, “Photoionization mass spectrometer with a microscope laser desorption source,” Rev. Sci. Instrum. 63, 3321–3325 (1992).
[CrossRef]

Kelly, P. B.

J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.

Laserna, J. J.

D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
[CrossRef] [PubMed]

Lykke, K. R.

M. R. Savina, K. R. Lykke, “Microscopic chemical imaging with laser desorption mass spectrometry,” Anal. Chem. 69, 3741–3746 (1997).
[CrossRef]

J. M. Behm, J. C. Hemminger, K. R. Lykke, “Microscopic laser desorption/postionization Fourier transform mass spectrometry,” Anal. Chem. 68, 713–719 (1996).
[CrossRef] [PubMed]

McDougall, G. M.

V. F. Urbanic, G. M. McDougall, A. J. White, A. A. Bahurmuz, “Deuterium ingress at rolled joints in CANDU reactors,” in Proceedings of an International Conference on Expanded and Rolled Joint Technology, E. G. Price, ed. (Canadian Nuclear Society, Toronto, 1993), pp. G18–G45.

McRae, G. A.

G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998).
[CrossRef]

Nogar, N. S.

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[CrossRef]

J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.

Ojamäe, L.

L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994).
[CrossRef]

Philippoz, J.-M.

J.-M. Philippoz, R. Zenobi, R. N. Zare, “Pulsed heating of surfaces: comparison between numerical simulation, analytical models, and experiments,” Chem. Phys. Lett. 158, 12–17 (1989).
[CrossRef]

Pisani, C.

L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994).
[CrossRef]

Ready, J. F.

J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).

Roetti, C.

L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994).
[CrossRef]

Romero, D.

D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
[CrossRef] [PubMed]

Savina, M. R.

M. R. Savina, K. R. Lykke, “Microscopic chemical imaging with laser desorption mass spectrometry,” Anal. Chem. 69, 3741–3746 (1997).
[CrossRef]

Sopchyshyn, F. C.

G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998).
[CrossRef]

Urbanic, V. F.

V. F. Urbanic, G. M. McDougall, A. J. White, A. A. Bahurmuz, “Deuterium ingress at rolled joints in CANDU reactors,” in Proceedings of an International Conference on Expanded and Rolled Joint Technology, E. G. Price, ed. (Canadian Nuclear Society, Toronto, 1993), pp. G18–G45.

Von Allmen, M.

M. Von Allmen, Laser Beam Interactions With Materials: Physical Principles and Applications (Springer-Verlag, Berlin, 1987).
[CrossRef]

Voumard, P.

R. Zenobi, Q. Zhan, P. Voumard, “Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry,” Mikrochim. Acta 124, 273–281 (1996).
[CrossRef]

Walker, Z. H.

G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998).
[CrossRef]

Wendt, H. R.

M. S. de Vries, D. J. Elloway, H. R. Wendt, H. E. Hunziker, “Photoionization mass spectrometer with a microscope laser desorption source,” Rev. Sci. Instrum. 63, 3321–3325 (1992).
[CrossRef]

White, A. J.

V. F. Urbanic, G. M. McDougall, A. J. White, A. A. Bahurmuz, “Deuterium ingress at rolled joints in CANDU reactors,” in Proceedings of an International Conference on Expanded and Rolled Joint Technology, E. G. Price, ed. (Canadian Nuclear Society, Toronto, 1993), pp. G18–G45.

Winograd, N.

N. Winograd, “Ion beams and laser postionization for molecule-specific imaging,” Anal. Chem. 65, 622A–629A (1993).
[CrossRef] [PubMed]

Zare, R. N.

J.-M. Philippoz, R. Zenobi, R. N. Zare, “Pulsed heating of surfaces: comparison between numerical simulation, analytical models, and experiments,” Chem. Phys. Lett. 158, 12–17 (1989).
[CrossRef]

Zenobi, R.

R. Zenobi, Q. Zhan, P. Voumard, “Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry,” Mikrochim. Acta 124, 273–281 (1996).
[CrossRef]

J.-M. Philippoz, R. Zenobi, R. N. Zare, “Pulsed heating of surfaces: comparison between numerical simulation, analytical models, and experiments,” Chem. Phys. Lett. 158, 12–17 (1989).
[CrossRef]

Zhan, Q.

R. Zenobi, Q. Zhan, P. Voumard, “Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry,” Mikrochim. Acta 124, 273–281 (1996).
[CrossRef]

Acta Crystallogr. B (1)

L. Ojamäe, K. Hermansson, C. Pisani, M. Causà, C. Roetti, “Structural, vibrational and electronic properties of a crystalline hydrate from ab initio periodic Hartree–Fock calculations,” Acta Crystallogr. B 50, 268–279 (1994).
[CrossRef]

Anal. Chem. (5)

M. R. Savina, K. R. Lykke, “Microscopic chemical imaging with laser desorption mass spectrometry,” Anal. Chem. 69, 3741–3746 (1997).
[CrossRef]

J. M. Behm, J. C. Hemminger, K. R. Lykke, “Microscopic laser desorption/postionization Fourier transform mass spectrometry,” Anal. Chem. 68, 713–719 (1996).
[CrossRef] [PubMed]

R. M. Caprioli, T. B. Farmer, J. Gile, “Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS,” Anal. Chem. 69, 4751–4760 (1997).
[CrossRef] [PubMed]

D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
[CrossRef] [PubMed]

N. Winograd, “Ion beams and laser postionization for molecule-specific imaging,” Anal. Chem. 65, 622A–629A (1993).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

J.-M. Philippoz, R. Zenobi, R. N. Zare, “Pulsed heating of surfaces: comparison between numerical simulation, analytical models, and experiments,” Chem. Phys. Lett. 158, 12–17 (1989).
[CrossRef]

Microchem. J. (1)

G. C. Eiden, J. E. Anderson, N. S. Nogar, “Resonant laser ablation: semiquantitative aspects and threshold effects,” Microchem. J. 50, 289–300 (1994).
[CrossRef]

Mikrochim. Acta (1)

R. Zenobi, Q. Zhan, P. Voumard, “Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry,” Mikrochim. Acta 124, 273–281 (1996).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

G. A. Bickel, F. C. Sopchyshyn, G. A. McRae, Z. H. Walker, L. W. Green, “Determination of hydrogen and deuterium in Zr-2.5Nb by laser ablation,” Nucl. Instrum. Methods Phys. Res. B 140, 217–228 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

M. S. de Vries, D. J. Elloway, H. R. Wendt, H. E. Hunziker, “Photoionization mass spectrometer with a microscope laser desorption source,” Rev. Sci. Instrum. 63, 3321–3325 (1992).
[CrossRef]

Surf. Sci. (1)

J. L. Brand, S. M. George, “Effects of laser pulse characteristics and thermal desorption parameters on laser induced thermal desorption,” Surf. Sci. 167, 341–362 (1986).
[CrossRef]

Other (5)

J. E. Anderson, T. M. Allen, A. W. Garrett, C. G. Gill, P. H. Hemberger, P. B. Kelly, N. S. Nogar, “Resonant laser ablation: mechanisms and applications,” in Resonance Ionization Spectroscopy 1996, Vol. 388 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1997), pp. 195–198.

V. F. Urbanic, G. M. McDougall, A. J. White, A. A. Bahurmuz, “Deuterium ingress at rolled joints in CANDU reactors,” in Proceedings of an International Conference on Expanded and Rolled Joint Technology, E. G. Price, ed. (Canadian Nuclear Society, Toronto, 1993), pp. G18–G45.

Software provided by D. A. Dahl, J. E. Delmore, Idaho National Engineering Laboratory, EG&G Idaho, Inc.

J. F. Ready, Effects of High Power Laser Radiation (Academic, New York, 1971).

M. Von Allmen, Laser Beam Interactions With Materials: Physical Principles and Applications (Springer-Verlag, Berlin, 1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross-sectional schematic of a rolled joint.

Fig. 2
Fig. 2

Schematic of the laser-desorption microprobe instrument: BBO, β barium borate doubling crystal; P, Pellin Broca prism for beam separation; M’s, turning mirrors; BA, high reflector for beam attenuation (2% of incident-beam energy is transmitted); J, joulemeter; L, 10- or 50-cm focal-length lens.

Fig. 3
Fig. 3

Geometry and potentials used for the TOF MS electrodes. The length of the drift tube is 40 cm. All the components are cylindrically symmetric except for the sample stage and the adjacent deflector. MCP, microchannel plate.

Fig. 4
Fig. 4

Line profiles across a portion of a mock-up Cr-plated hub with a repeat scan (offset above for clarity). The incident-beam energy is 0.04 µJ, focused with the 10-cm focal-length lens, and the step size is 2.5 µm. Signals are the average of 30 laser pulses at each location per scan.

Fig. 5
Fig. 5

Images of a single 100 µm × 100 µm region of a mock-up Cr-plated hub. (a) Laser-desorption image of Li. The incident-beam energy is 0.035 µJ, focused with the 10-cm focal-length lens, and the step size is 2.5 µm. The signal intensities are normalized to an 8-bit linear gray scale with white as the maximum signal. (b) SIMS image with Li+ secondary ions. The signal intensities are normalized to an 8-bit linear gray scale with white as the maximum signal. (c) AFM profile. The depth scale is linear with a range of ∼8 µm from black (low elevation) to white (high elevation). (d) SEM (secondary electron emission) image.

Fig. 6
Fig. 6

Line profile on a mock-up Cr-plated hub. (a) Laser desorption profile of Li. The incident-beam energy is 0.035 µJ, focused with the 10-cm focal-length lens, and the step size is 5 µm. (b) Topography along the same line by AFM. The arrows mark the fine cracks that are more visible from SEM images. (c) SIMS Li+ secondary ion profile of the same line.

Fig. 7
Fig. 7

Laser-desorption profiles of Li on experimental Cr-plated rolled-joint hub sample. Geometry of the hub is shown in cross section at bottom. (a) Low-resolution Li profile of hub surface with scale and orientation corresponding to lower cross-sectional hub diagram. The incident-beam energy is 2.0 µJ, focused with the 50-cm focal-length lens, and the step size is 250 µm. The bar height denotes the average Li+ signal, and the bar width approximates the laser spot diameter or width of sampled area. (b) Repeated scan at high spatial resolution between 44.4 and 46.2 mm. The incident-beam energy is 0.05 µJ, focused with the 10-cm focal-length lens, and the step size is 5 µm. Region I is approximately the damaged groove shoulder, region II is covered with the thick dark oxide, and region III is coated with the thin corrosion film.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔTz, t=1-rkρcπ0tIt-τexp-z2ρc/4kττdτ,

Metrics