Abstract

Laser-induced breakdown spectroscopy is evaluated as a means of detecting the fire suppressants CF3Br, C3F7H, and CF4 and the refrigerant C2F4H2. The feasibility of employing laser-induced breakdown spectroscopy for time- and space-resolved measurement of these agents during use, storage, and recharge is discussed. Data are presented that demonstrate the conditions necessary for optimal detection of these chemicals.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Wuebbles, P. S. Connell, K. O. Patten, “Evaluating the potential effects of halon replacements on the global environment,” in Halon Replacements: Technology and Science, A. W. Miziolek, W. Tsang, eds. ACS Symp. Series611, 59–71 (1995).
  2. W. L. Grosshandler, R. G. Gann, W. M. Pitts, eds., “Evaluation of Alternative In-Flight Fire Suppressants for Full-Scale Testing in Simulated Aircraft Engine Nacelles and Dry Bays,” (National Institute of Standards and Technology, Gaithersburg, Md., 1994).
  3. C. K. Williamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
    [CrossRef]
  4. L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.
  5. J. B. Simeonsson, A. W. Miziolek, “Time-resolved emission studies of ArF-laser-produced microplasmas,” Appl. Opt. 32, 939–947 (1993).
    [CrossRef] [PubMed]
  6. H. J. Hakkanen, J. E. I. Korppi-Tommola, “UV-laser plasma study of elemental distributions of paper coatings,” Appl. Spectrosc. 49, 1721–1728 (1995).
    [CrossRef]
  7. J. Belliveau, L. Cadwell, K. Coleman, L. Huwel, H. Griffin, “Laser-induced breakdown spectroscopy of steels at atmospheric pressure and in air,” Appl. Spectrosc. 39, 727–729 (1985).
    [CrossRef]
  8. D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy,” Anal. Chem. 55, 1246–1252 (1983).
    [CrossRef]
  9. E. A. P. Cheng, R. D. Fraser, J. G. Eden, “Detection of trace concentrations of column III and V hydrides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 45, 949–952 (1991).
    [CrossRef]
  10. M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
    [CrossRef]
  11. C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
    [CrossRef]
  12. D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–578 (1987).
    [CrossRef]
  13. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
    [CrossRef]
  14. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
    [CrossRef]
  15. R. J. Locke, J. B. Morris, B. E. Forch, A. W. Miziolek, “Ultraviolet laser microplasma-gas chromatography detector: detection of species-specific fragment emission,” Appl. Opt. 29, 4987–4992 (1990).
    [CrossRef] [PubMed]

1998

C. K. Williamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

1996

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

1995

1994

C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
[CrossRef]

1993

1991

E. A. P. Cheng, R. D. Fraser, J. G. Eden, “Detection of trace concentrations of column III and V hydrides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 45, 949–952 (1991).
[CrossRef]

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

1990

1987

1985

1983

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

Angel, S. M.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Belliveau, J.

Cadwell, L.

Casini, M.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Cheng, E. A. P.

Ciucii, A.

C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
[CrossRef]

Coleman, K.

Connell, P. S.

D. J. Wuebbles, P. S. Connell, K. O. Patten, “Evaluating the potential effects of halon replacements on the global environment,” in Halon Replacements: Technology and Science, A. W. Miziolek, W. Tsang, eds. ACS Symp. Series611, 59–71 (1995).

Cremers, D. A.

K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222–233 (1996).
[CrossRef]

D. A. Cremers, “The analysis of metals at a distance using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 572–578 (1987).
[CrossRef]

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

Daniel, R. G.

C. K. Williamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

De Rosa, M.

C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
[CrossRef]

Eden, J. G.

Ferris, M. J.

Forch, B. E.

Foster, L. E.

Fraser, R. D.

Goode, S. R.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Griffin, H.

Hakkanen, H. J.

Harith, M. A.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Huwel, L.

Korppi-Tommola, J. E. I.

Lazzari, C.

C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
[CrossRef]

Locke, R. J.

Marquardt, B. J.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

McNesby, K. L.

C. K. Williamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

Miziolek, A. W.

Morris, J. B.

Palleschi, V.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Palleshci, V.

C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
[CrossRef]

Patten, K. O.

D. J. Wuebbles, P. S. Connell, K. O. Patten, “Evaluating the potential effects of halon replacements on the global environment,” in Halon Replacements: Technology and Science, A. W. Miziolek, W. Tsang, eds. ACS Symp. Series611, 59–71 (1995).

Radziemski, L. J.

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

Rastelli, S.

C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
[CrossRef]

Salvetti, A.

C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
[CrossRef]

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Simeonsson, J. B.

Singh, D. P.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Vaselli, M. L.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Williamson, C. K.

C. K. Williamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

Wuebbles, D. J.

D. J. Wuebbles, P. S. Connell, K. O. Patten, “Evaluating the potential effects of halon replacements on the global environment,” in Halon Replacements: Technology and Science, A. W. Miziolek, W. Tsang, eds. ACS Symp. Series611, 59–71 (1995).

Yamamoto, K. Y.

Anal. Chem.

C. K. Williamson, R. G. Daniel, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents,” Anal. Chem. 70, 1186–1191 (1998).
[CrossRef]

D. A. Cremers, L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy,” Anal. Chem. 55, 1246–1252 (1983).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Laser Part. Beams

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. L. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

C. Lazzari, M. De Rosa, S. Rastelli, A. Ciucii, V. Palleshci, A. Salvetti, “Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique,” Laser Part. Beams 12, 525–530 (1994).
[CrossRef]

Other

L. J. Radziemski, D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski, D. A. Cremers, eds. (Marcel Dekker, New York, 1989), pp. 295–325.

D. J. Wuebbles, P. S. Connell, K. O. Patten, “Evaluating the potential effects of halon replacements on the global environment,” in Halon Replacements: Technology and Science, A. W. Miziolek, W. Tsang, eds. ACS Symp. Series611, 59–71 (1995).

W. L. Grosshandler, R. G. Gann, W. M. Pitts, eds., “Evaluation of Alternative In-Flight Fire Suppressants for Full-Scale Testing in Simulated Aircraft Engine Nacelles and Dry Bays,” (National Institute of Standards and Technology, Gaithersburg, Md., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the instrumentation.

Fig. 2
Fig. 2

Time-delay spectra: neat Halon-1301, integration time 0.2 µs, gate delay 0.0–3.0 µs in 0.2-µs steps.

Fig. 3
Fig. 3

LIBS spectra of Halon-1301.

Fig. 4
Fig. 4

Signal-to-noise ratio for atomic-fluorine emission at 685.6 nm as a function of gate delay for the gated, intensified diode-array detector used in these studies. For each of the compounds studied, optimum delay was determined to be 0.6 µs.

Fig. 5
Fig. 5

Dependence of signal-to-noise ratio on integration time.

Fig. 6
Fig. 6

Concentration versus LIBS atomic-fluorine emission intensity for the four compounds analyzed for this study; ppm, parts in 106.

Fig. 7
Fig. 7

Single-shot Halon-1301 spectrum: 9.17 ppTh, 0.6-µs detection delay, 0.5-µs integration time.

Tables (2)

Tables Icon

Table 1 Dependence of Signal-to-Noise Ratio on Laser Energy for Atomic-Fluorine Emission at 685.6 nm

Tables Icon

Table 2 Limits of Detection for Halon Alternatives Examined for This Study

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

LOD=3Sb/m,

Metrics