Abstract

A compact, pulsed Nd:YAG laser-based instrument has been built to measure in situ absolute gas temperatures in large industrial furnaces by use of spontaneous anti-Stokes Raman scattering. The backscattering configuration was used to simplify the optics alignment and increase signal-to-noise ratios. Gated signal detection significantly reduced the background emission that is found in combustion environments. The anti-Stokes instead of the Stokes component was used to eliminate contributions to spectra from cold atmospheric nitrogen. The system was evaluated in a methane/air flame and in a bench-top oven, and the technique was found to be a reliable tool for nonintrusive absolute temperature measurements with relatively clean gas streams. A water-cooled insertion probe was integrated with the Raman system for measurement of the temperature profiles inside an industrial furnace. Gas temperatures near 1500–1800 K at atmospheric pressure in an industrial furnace were inferred by fitting calculated profiles to experimental spectra with a standard deviation of less than 1% for averaging times of ∼200 s. The temperatures inferred from Raman spectra are in good agreement with data recorded with a thermocouple probe.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, 1996), Chap. 5 and references therein, pp. 209–280.
  2. K. K. Kuo, T. P. Parr, eds., Non-intrusive Combustion Diagnostic (Begell House, New York, 1994).
  3. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  4. N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci. 14, 147–170 (1988).
    [CrossRef]
  5. T. S. Cheng, J. A. Wehrmeyer, R. W. Ritz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
    [CrossRef]
  6. W. Reckers, L. Hüwel, G. Grünefeld, P. Andersen, “Spatially resolved multispecies and temperature analysis in hydrogen flames,” Appl. Opt. 32, 907–918 (1993).
    [CrossRef] [PubMed]
  7. A. N. Karpetis, A. Gomez, “Temperature measurements in spray flames by spontaneous Raman scattering,” Opt. Lett. 21, 704–706 (1996).
    [CrossRef] [PubMed]
  8. E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
    [PubMed]
  9. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), pp. 193–251.
  10. R. Lückerath, M. Woyde, W. Meier, W. Stricker, U. Schnell, H.-C. Magel, J. Görres, H. Spliethoff, H. Maier, “Comparison of coherent anti-Stokes Raman-scattering thermometry with thermocouple measurements and model predictions in both natural-gas and coal-dust flames,” Appl. Opt. 34, 3303–3312 (1995).
    [CrossRef] [PubMed]
  11. J. P. Singh, F. Y. Yueh, “Comparative study of temperature measurement with folded BOX-CARS and collinear CARS,” Combust. Flame 89, 77–94 (1992).
    [CrossRef]
  12. J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, J. J. Lineberry, “Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser,” Appl. Spectrosc. 49, 1649–1659 (1992).
    [CrossRef]
  13. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 27, 5379–5396 (1993).
    [CrossRef]
  14. M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single-and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
    [CrossRef] [PubMed]
  15. F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer, 2nd ed. (Wiley, New York, 1990), p. 381.
  16. Ref. 15, p. A15, App. A, Table A.4.
  17. Ref. 15, p. A25, App. A, Table A.8.
  18. E. J. Beiting, J. P. Singh, “Simple particle injection system for laboratory burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
    [CrossRef]
  19. A. Thumann, T. Seeger, A. Leipertz, “Evaluation of two different gas temperatures and their volumetric fraction from broadband N2 coherent anti-Stokes Raman spectroscopy spectra,” Appl. Opt. 34, 3313–3317 (1995).
    [CrossRef] [PubMed]
  20. T. Parameswaran, D. R. Snelling, “Estimation of spatial averaging of temperatures from coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 35, 5461–5464 (1996).
    [CrossRef] [PubMed]

1997

1996

1995

1993

1992

T. S. Cheng, J. A. Wehrmeyer, R. W. Ritz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

J. P. Singh, F. Y. Yueh, “Comparative study of temperature measurement with folded BOX-CARS and collinear CARS,” Combust. Flame 89, 77–94 (1992).
[CrossRef]

J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, J. J. Lineberry, “Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser,” Appl. Spectrosc. 49, 1649–1659 (1992).
[CrossRef]

1988

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

1986

E. J. Beiting, J. P. Singh, “Simple particle injection system for laboratory burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
[CrossRef]

Andersen, P.

Beiting, E. J.

E. J. Beiting, J. P. Singh, “Simple particle injection system for laboratory burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
[CrossRef]

Cheng, T. S.

T. S. Cheng, J. A. Wehrmeyer, R. W. Ritz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

Cook, R. L.

J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, J. J. Lineberry, “Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser,” Appl. Spectrosc. 49, 1649–1659 (1992).
[CrossRef]

DeWitt, D. P.

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer, 2nd ed. (Wiley, New York, 1990), p. 381.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, 1996), Chap. 5 and references therein, pp. 209–280.

Gomez, A.

Görres, J.

Greenhalgh, D. A.

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), pp. 193–251.

Grisch, F.

Grünefeld, G.

Hanson, R. K.

M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single-and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef] [PubMed]

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 27, 5379–5396 (1993).
[CrossRef]

Hassel, E. P.

Hüwel, L.

Incropera, F. P.

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer, 2nd ed. (Wiley, New York, 1990), p. 381.

Karpetis, A. N.

Laurendeau, N. M.

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

Lee, J. J.

J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, J. J. Lineberry, “Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser,” Appl. Spectrosc. 49, 1649–1659 (1992).
[CrossRef]

Lee, M. P.

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 27, 5379–5396 (1993).
[CrossRef]

Leipertz, A.

Lineberry, J. J.

J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, J. J. Lineberry, “Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser,” Appl. Spectrosc. 49, 1649–1659 (1992).
[CrossRef]

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

Lückerath, R.

Magel, H.-C.

Maier, H.

McMillin, B. K.

M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 27, 5379–5396 (1993).
[CrossRef]

Meier, W.

Parameswaran, T.

Reckers, W.

Ritz, R. W.

T. S. Cheng, J. A. Wehrmeyer, R. W. Ritz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

Schnell, U.

Seeger, T.

Singh, J. P.

J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, J. J. Lineberry, “Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser,” Appl. Spectrosc. 49, 1649–1659 (1992).
[CrossRef]

J. P. Singh, F. Y. Yueh, “Comparative study of temperature measurement with folded BOX-CARS and collinear CARS,” Combust. Flame 89, 77–94 (1992).
[CrossRef]

E. J. Beiting, J. P. Singh, “Simple particle injection system for laboratory burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
[CrossRef]

Snelling, D. R.

Spliethoff, H.

Stricker, W.

Thumann, A.

Thurber, M. C.

Wehrmeyer, J. A.

T. S. Cheng, J. A. Wehrmeyer, R. W. Ritz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

Woyde, M.

Yueh, F. Y.

J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, J. J. Lineberry, “Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser,” Appl. Spectrosc. 49, 1649–1659 (1992).
[CrossRef]

J. P. Singh, F. Y. Yueh, “Comparative study of temperature measurement with folded BOX-CARS and collinear CARS,” Combust. Flame 89, 77–94 (1992).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

J. P. Singh, F. Y. Yueh, R. L. Cook, J. J. Lee, J. J. Lineberry, “Comparison of CARS temperature profile measurements with flow field model calculations in an MHD diffuser,” Appl. Spectrosc. 49, 1649–1659 (1992).
[CrossRef]

Combust. Flame

J. P. Singh, F. Y. Yueh, “Comparative study of temperature measurement with folded BOX-CARS and collinear CARS,” Combust. Flame 89, 77–94 (1992).
[CrossRef]

T. S. Cheng, J. A. Wehrmeyer, R. W. Ritz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992).
[CrossRef]

Opt. Lett.

Prog. Energy Combust. Sci.

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci. 14, 147–170 (1988).
[CrossRef]

Rev. Sci. Instrum.

E. J. Beiting, J. P. Singh, “Simple particle injection system for laboratory burners,” Rev. Sci. Instrum. 57, 377–379 (1986).
[CrossRef]

Other

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), pp. 193–251.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, 1996), Chap. 5 and references therein, pp. 209–280.

K. K. Kuo, T. P. Parr, eds., Non-intrusive Combustion Diagnostic (Begell House, New York, 1994).

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer, 2nd ed. (Wiley, New York, 1990), p. 381.

Ref. 15, p. A15, App. A, Table A.4.

Ref. 15, p. A25, App. A, Table A.8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for spontaneous Raman spectroscopy.

Fig. 2
Fig. 2

(a) Coarse wavelength response of the registration system. Step, 10 nm. (b) Detailed wavelength response function of the registration system near 473 nm. Step, 0.016 nm.

Fig. 3
Fig. 3

(a) 1.2-m water-cooled stainless-steel Raman probe. (b) 2.1-m water-cooled stainless-steel thermocouple probe: TC1, TC2, thermocouples.

Fig. 4
Fig. 4

(a) Methane flame geometry. The length, height, and thickness of the flame are 10, 3, and 1 cm, respectively. The temperature in the middle of the flame inferred from Raman spectra is ∼2100 K. (b) Bench-top oven geometry. The length and the inside diameter of the oven are 50 and 8 cm, respectively. Temperature varies from 300 to 1400 K.

Fig. 5
Fig. 5

Dependence of the nitrogen anti-Stokes signal on the laser power. The gas temperature is 1300 K.

Fig. 6
Fig. 6

Fitting of experimental and calculated anti-Stokes Raman spectra (T TC = 1297 K, T SRS = 1295 K).

Fig. 7
Fig. 7

Comparison of the thermocouple and the spontaneous Raman spectroscopy contour fitting temperatures.

Fig. 8
Fig. 8

Schematic of the furnace. The ports used in Raman measurements are shown shaded.

Fig. 9
Fig. 9

Raman spectra recorded inside the furnace: (a) 98 cm from the inside wall and (b) by 38 cm from the inside wall.

Fig. 10
Fig. 10

Raman inferred temperature at different positions in the furnace compared with thermocouple readings: (a) port location 1 and (b) port location 2. Dashed curves, SRS; dotted curves, TC.

Fig. 11
Fig. 11

Spectra of water and nitrogen bands recorded simultaneously 50 cm inside the furnace at port 2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Iv,J=σRνA4J2J+1vgIILN exp-Ev,J/kT/QT,
Qconv+Qrad+Qcond=0,
Qconv+Qrad=0.
Qrad=σATw4-Tt4,
Qconv=hATg-Tt,

Metrics