Abstract

Currently laser-induced incandescence (LII) is widely used for the measurement of soot volume fraction. A particularly important aspect of the technique that has received less attention, however, is calibration. The applicability of cavity ringdown (CRD) for measurement of soot volume fraction f v is assessed, and the calibration of LII by means of CRD is demonstrated. The accuracy of CRD for f v determination is validated by comparison with traditional light extinction and path-integrated LII. By use of CRD, the quantification of LII for parts in 109 (ppb) f v levels is demonstrated. Results are presented that demonstrate the accuracy of CRD for a single laser pulse to be better than ±5% for measurement of ppb soot volume-fraction levels over a 1-cm path length. By use of CRD, spatially resolved LII signals from soot within methane–air diffusion flames are calibrated for ppb f v levels, thereby avoiding the extrapolation required of less sensitive methods in current use.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription