Abstract

Currently laser-induced incandescence (LII) is widely used for the measurement of soot volume fraction. A particularly important aspect of the technique that has received less attention, however, is calibration. The applicability of cavity ringdown (CRD) for measurement of soot volume fraction f v is assessed, and the calibration of LII by means of CRD is demonstrated. The accuracy of CRD for f v determination is validated by comparison with traditional light extinction and path-integrated LII. By use of CRD, the quantification of LII for parts in 109 (ppb) f v levels is demonstrated. Results are presented that demonstrate the accuracy of CRD for a single laser pulse to be better than ±5% for measurement of ppb soot volume-fraction levels over a 1-cm path length. By use of CRD, spatially resolved LII signals from soot within methane–air diffusion flames are calibrated for ppb f v levels, thereby avoiding the extrapolation required of less sensitive methods in current use.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  2. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
    [CrossRef]
  3. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  4. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  5. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
    [CrossRef] [PubMed]
  6. N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
    [CrossRef]
  7. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  8. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
    [CrossRef]
  9. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  10. C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  11. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1606 (1997).
    [CrossRef]
  12. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
    [CrossRef]
  13. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [CrossRef] [PubMed]
  14. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–730 (1997).
    [CrossRef] [PubMed]
  15. L. A. Melton, “Soot diagnostics based on laser-heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef]
  16. D. L. Hofeldt, “Real time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrensdale, Pa., 1993).
  17. C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
    [CrossRef]
  18. U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Varvalho, “Fractal and projected properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
    [CrossRef]
  19. R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be measured by laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
    [CrossRef]
  20. P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
    [CrossRef]
  21. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
    [CrossRef]
  22. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
    [CrossRef] [PubMed]
  23. J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
    [CrossRef]
  24. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  25. G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
    [CrossRef]
  26. M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
    [CrossRef]
  27. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  28. T. T. Charalampopolous, “Morphology and dynamics of agglomerated particles in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
    [CrossRef]
  29. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  30. G. Prado, A. Garo, A. Ko, A. Sarofim, “Polycyclic aromatic hydrocarbon formation and destruction in a laminar diffusion flame,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 989–996.
  31. R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–310 (1995).
    [CrossRef]
  32. R. L. Vander Wal, “Onset of carbonization: spatial location via simultaneous LIF-LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996).
    [CrossRef]
  33. K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57–0.56I for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
    [CrossRef]
  34. J. G. Taylor, An Introduction to Error Analysis (University Science, Mill Valley, Calif., 1982).

1999 (1)

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be measured by laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

1997 (4)

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–730 (1997).
[CrossRef] [PubMed]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1606 (1997).
[CrossRef]

1996 (5)

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, “Onset of carbonization: spatial location via simultaneous LIF-LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57–0.56I for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

1995 (7)

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[CrossRef]

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Varvalho, “Fractal and projected properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–310 (1995).
[CrossRef]

1994 (4)

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

1993 (1)

N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

1992 (1)

T. T. Charalampopolous, “Morphology and dynamics of agglomerated particles in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

1989 (1)

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1984 (2)

1983 (1)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Appel, J.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[CrossRef]

Benecchi, S.

Bockhorn, H.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Boogaarts, M. G. H.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Charalampopolous, T. T.

T. T. Charalampopolous, “Morphology and dynamics of agglomerated particles in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

Choi, M. Y.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

Cignoli, F.

Dadamio, J. R.

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Dasch, C. J.

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Dobbins, R. A.

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–310 (1995).
[CrossRef]

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Faeth, G. M.

U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Varvalho, “Fractal and projected properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[CrossRef]

Farias, T. L.

U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Varvalho, “Fractal and projected properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Fletcher, R. A.

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–310 (1995).
[CrossRef]

Garo, A.

G. Prado, A. Garo, A. Ko, A. Sarofim, “Polycyclic aromatic hydrocarbon formation and destruction in a laminar diffusion flame,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 989–996.

Greenhalgh, D. A.

N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Gupta, S.

Hamins, A.

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

Harrington, J. E.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Hofeldt, D. L.

D. L. Hofeldt, “Real time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrensdale, Pa., 1993).

Holleman, I.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jensen, K. A.

Jongma, R. T.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Jungfleisch, B.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[CrossRef]

Kashiwagi, T.

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

Ko, A.

G. Prado, A. Garo, A. Ko, A. Sarofim, “Polycyclic aromatic hydrocarbon formation and destruction in a laminar diffusion flame,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 989–996.

Koylu, U. O.

G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[CrossRef]

U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Varvalho, “Fractal and projected properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Kruger, C. H.

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Lee, T. W.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Leipertz, A.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Lu, W.

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–310 (1995).
[CrossRef]

Ma, Y.

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Marquardt, M.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[CrossRef]

Megaridis, C. M.

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

Meijer, G.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Melton, L. A.

Mewes, B.

Mulholland, G. W.

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

O’Keefe, A.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Owano, T. G.

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Paul, J. B.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Pinson, J. A.

Prado, G.

G. Prado, A. Garo, A. Ko, A. Sarofim, “Polycyclic aromatic hydrocarbon formation and destruction in a laminar diffusion flame,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 989–996.

Quay, B.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Rakestraw, D. J.

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Sarofim, A.

G. Prado, A. Garo, A. Ko, A. Sarofim, “Polycyclic aromatic hydrocarbon formation and destruction in a laminar diffusion flame,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 989–996.

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Scherer, J. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

Schraml, S.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Seitzman, J. M.

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Shaddix, C. R.

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57–0.56I for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Smith, K. C.

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Smyth, K. C.

K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57–0.56I for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Stephens, A. B.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be measured by laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

Suntz, R.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[CrossRef]

Tait, N. A.

N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Taylor, J. G.

J. G. Taylor, An Introduction to Error Analysis (University Science, Mill Valley, Calif., 1982).

Ticich, T. M.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be measured by laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be measured by laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1606 (1997).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, “Onset of carbonization: spatial location via simultaneous LIF-LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Varvalho, M. G.

U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Varvalho, “Fractal and projected properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Wahl, E. H.

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Will, S.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Zalickik, P.

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Zare, R. N.

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Zhou, Z.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Zizak, G.

Appl. Opt. (7)

Appl. Phys. B (1)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

N. A. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Chem. Phys. Lett. (2)

P. Zalickik, Y. Ma, R. N. Zare, E. H. Wahl, J. R. Dadamio, T. G. Owano, C. H. Kruger, “Methyl radical measurements by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265, 169–176 (1997).
[CrossRef]

Chem. Rev. (1)

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Combust. Flame (10)

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–310 (1995).
[CrossRef]

M. Y. Choi, A. Hamins, G. W. Mulholland, T. Kashiwagi, “Comparisons of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in a diffusion flame,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

U. O. Koylu, G. M. Faeth, T. L. Farias, M. G. Varvalho, “Fractal and projected properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

R. L. Vander Wal, T. M. Ticich, A. B. Stephens, “Can soot primary particle size be measured by laser-induced incandescence?” Combust. Flame 116, 291–296 (1999).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smith, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m = 1.57–0.56I for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Combust. Sci. Technol. (3)

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

R. L. Vander Wal, “Onset of carbonization: spatial location via simultaneous LIF-LII and characterization via TEM,” Combust. Sci. Technol. 118, 343–360 (1996).
[CrossRef]

G. M. Faeth, U. O. Koylu, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[CrossRef]

Prog. Energy Combust. Sci. (1)

T. T. Charalampopolous, “Morphology and dynamics of agglomerated particles in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
[CrossRef]

Rev. Sci. Instrum. (2)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Other (6)

D. L. Hofeldt, “Real time soot concentration measurement technique for engine exhaust streams,” SAE Tech. Paper 930079 (Society of Automotive Engineers, Warrensdale, Pa., 1993).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

G. Prado, A. Garo, A. Ko, A. Sarofim, “Polycyclic aromatic hydrocarbon formation and destruction in a laminar diffusion flame,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 989–996.

J. G. Taylor, An Introduction to Error Analysis (University Science, Mill Valley, Calif., 1982).

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fractions from laser-induced incandescence by comparison with extinction measurements in laminar, premixed flat flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2396.
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental diagram. N.D., neutral-density; DDG, digital-delay generator; PMT, photomultiplier tube; H.V., high-voltage.

Fig. 2
Fig. 2

Reference ringdown waveform and single exponential fit between the 90% and the 10% peak-intensity points on the decay curve.

Fig. 3
Fig. 3

Path-integrated absorbance through (a) the methane–air diffusion flame, (b) the nitrogen-diluted methane–air diffusion flame. Shown also for comparison are path-integrated LII-based absorbance values as functions of axial HAB calculated with the calibration procedure outlined in the text.

Fig. 4
Fig. 4

Radial LII intensity profiles extracted from the images in Fig. 3 converted to f v for (a) the methane–air diffusion flame and (b) the nitrogen-diluted methane–air diffusion flame.

Tables (1)

Tables Icon

Table 1 Summary of Ringdown Time Constants Extracted from Ringdown Waveforms Collected from the Indicated Diffusion Flamesa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

signal=A exp-t/τ,
kefvL/λ=kd/c-1+R,
-RRKefvdLλ=C -RRKefv,relλdL.
-RRKefv,relλdL=x-RxRLIIx.
Ke=36πnkn2-k2+22+4n2k2,

Metrics