Abstract

Laser-induced fluorescence of the CH radical is used to determine the flame-front temperature of an 8-Torr premixed CH4/O2 flame. The A 2Δ–X 2Π (0, 0) and B 2Σ- - X 2Π (0, 0) bands give values of 1960 ± 60 and 1920 ± 70 K, respectively. This is an improvement over a previous study that found discrepancies up to 20% between these bands. New rotational-level-dependent transition probabilities are the main reason for this improvement. The weaker off-diagonal bands AX (0, 1) and BX (0, 1) yield temperatures of 1930 ± 90 and 1830 ± 100 K, respectively. The influence of rotational transfer on the predissociated levels that have N′ > 14 in B 2Σ-, v′ = 0 was investigated with fluorescence scans and a statistical power-gap law model of the relaxation; deviations up to 8% in temperature can occur because of this process.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Cambridge, Mass., 1996).
  2. K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohse-Höinghaus, M. L. Wise, D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low pressure flames,” Appl. Opt. 28, 3556–3566 (1989).
    [CrossRef] [PubMed]
  3. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
    [CrossRef]
  4. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
    [CrossRef]
  5. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
    [CrossRef]
  6. J. Luque, D. R. Crosley, “Absolute CH concentration in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
    [CrossRef]
  7. J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 959–966.
    [CrossRef]
  8. K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time-resolved CH A and B laser-induced fluorescence in low pressure hydrocarbon flames,” Appl. Opt. 27, 3679–3689 (1988).
    [CrossRef] [PubMed]
  9. J. Luque, J. Ruiz, M. Martin, “Rotationally resolved rate constant measurements for removal of CH A and B by ketene,” Laser Chem. 14, 207–216 (1994).
    [CrossRef]
  10. N. L. Garland, D. R. Crosley, “Relative transition probability measurements in the A–X and B–X bands of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591–595 (1984).
    [CrossRef]
  11. E. W. van Dishoeck, “Photodissociation processes in the CH molecule,” J. Chem. Phys. 86, 196–214 (1987).
    [CrossRef]
  12. J. Hinze, G. C. Lie, “Valence excited states of CH. III. Radiative lifetimes,” Astrophys. J. 196, 621–631 (1975).
    [CrossRef]
  13. D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
    [CrossRef]
  14. M. Zachwieja, “New investigations of the A–X band system in the CH radical and a new reduction of the vibration-rotation spectrum of CH from the ATMOS spectra,” J. Molec. Spectrosc. 170, 285–309 (1995).
    [CrossRef]
  15. N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A and B in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
    [CrossRef]
  16. J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.2),” (SRI International, Menlo Park, Calif., 1998).
  17. LUQUE@MPLVAX.SRI.COM; DRC@MPLVAX.SRI.COM; http://www.sri.com/cem/lifbase .
  18. M. D. Rumminger, R. W. Dibble, N. H. Heberle, D. R. Crosley, “Gas temperature above a porous radiant burner: comparison of measurements and model predictions,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1755–1762.
    [CrossRef]
  19. R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-induced fluorescence of the CH molecule in a low-pressure flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363–370 (1984).
    [CrossRef]
  20. R. G. Joklik, J. W. Daily, “LIF study of CH A collision dynamics in a low pressure oxyacetylene flame,” Combust. Flame 69, 211–219 (1987).
    [CrossRef]
  21. K. Kohse-Höinghaus, W. Perc, T. Just, “Laser-induced saturated fluorescence as a method for the determination of radical concentrations in flames,” Ber. Bunsenges. Phys. Chem. 87, 1052–1057 (1983).
    [CrossRef]
  22. K. Kohse-Höinghaus, R. Heidenreich, T. Just, “Determination of absolute OH and CH concentrations in a low pressure flame by laser-induced saturated fluorescence,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1177–1185.
  23. W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 reaction: rotational relaxation and quenching,” J. Chem. Phys. 46, 7–18 (1967).
    [CrossRef]
  24. J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH A,” J. Chem. Soc. Faraday Trans. 89, 1287–1290 (1993).
    [CrossRef]
  25. C. C. Wang, T. L. Chin, K. C. Lin, “Rotational energy transfer of CH in the B (v = 0) state by collisions with Ar and N2O using a time-resolved Fourier transform spectrometer,” J. Chem. Phys. 107, 10348–10349 (1997).
    [CrossRef]
  26. J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH B,” J. Phys. Chem. 98, 8274–8278 (1994).
    [CrossRef]
  27. R. N. Dixon, D. P. Newton, H. Rieley, “Collisionally induced rotational energy transfer within the A state of CH,” J. Chem. Soc. Faraday Trans. 2 83, 675–682 (1987).
    [CrossRef]
  28. R. Kienle, A. Jorg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH Av′ = 1,” Appl. Phys. B 56, 249–258 (1993).
    [CrossRef]
  29. R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH A in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).
  30. T. Nielsen, F. Borman, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2Σ+ (v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
    [CrossRef]
  31. J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991).
    [CrossRef]
  32. W. Q. Qingyu, M. Yang, Y. Li, “Rotational energy transfer within NO A by optical–optical, double-resonance multiphoton ionization spectroscopy,” J. Electrochem. Soc. 137, 3099–3103 (1990).
    [CrossRef]
  33. J. Luque, D. R. Crosley, “Predissociation rates in the B state of CH,” Chem. Phys. 206, 185–192 (1996).
    [CrossRef]
  34. N. Elander, M. Hehenberger, P. R. Bunker, “Theoretical studies related to time resolved spectroscopy: the iterative Rydberg–Klein–Dunham method and Weyl theory applied to the predissociations in the B state of CH,” Phys. Scr. 20, 631–646 (1979).
    [CrossRef]

1997 (3)

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

C. C. Wang, T. L. Chin, K. C. Lin, “Rotational energy transfer of CH in the B (v = 0) state by collisions with Ar and N2O using a time-resolved Fourier transform spectrometer,” J. Chem. Phys. 107, 10348–10349 (1997).
[CrossRef]

T. Nielsen, F. Borman, M. Burrows, P. Andresen, “Picosecond laser-induced fluorescence measurement of rotational energy transfer of OH A2Σ+ (v′ = 2) in atmospheric pressure flames,” Appl. Opt. 36, 7960–7969 (1997).
[CrossRef]

1996 (5)

J. Luque, D. R. Crosley, “Predissociation rates in the B state of CH,” Chem. Phys. 206, 185–192 (1996).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH A in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Absolute CH concentration in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

1995 (1)

M. Zachwieja, “New investigations of the A–X band system in the CH radical and a new reduction of the vibration-rotation spectrum of CH from the ATMOS spectra,” J. Molec. Spectrosc. 170, 285–309 (1995).
[CrossRef]

1994 (2)

J. Luque, J. Ruiz, M. Martin, “Rotationally resolved rate constant measurements for removal of CH A and B by ketene,” Laser Chem. 14, 207–216 (1994).
[CrossRef]

J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH B,” J. Phys. Chem. 98, 8274–8278 (1994).
[CrossRef]

1993 (2)

J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH A,” J. Chem. Soc. Faraday Trans. 89, 1287–1290 (1993).
[CrossRef]

R. Kienle, A. Jorg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH Av′ = 1,” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

1991 (1)

J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991).
[CrossRef]

1990 (1)

W. Q. Qingyu, M. Yang, Y. Li, “Rotational energy transfer within NO A by optical–optical, double-resonance multiphoton ionization spectroscopy,” J. Electrochem. Soc. 137, 3099–3103 (1990).
[CrossRef]

1989 (1)

1988 (1)

1987 (3)

R. N. Dixon, D. P. Newton, H. Rieley, “Collisionally induced rotational energy transfer within the A state of CH,” J. Chem. Soc. Faraday Trans. 2 83, 675–682 (1987).
[CrossRef]

R. G. Joklik, J. W. Daily, “LIF study of CH A collision dynamics in a low pressure oxyacetylene flame,” Combust. Flame 69, 211–219 (1987).
[CrossRef]

E. W. van Dishoeck, “Photodissociation processes in the CH molecule,” J. Chem. Phys. 86, 196–214 (1987).
[CrossRef]

1985 (1)

1984 (2)

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-induced fluorescence of the CH molecule in a low-pressure flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363–370 (1984).
[CrossRef]

N. L. Garland, D. R. Crosley, “Relative transition probability measurements in the A–X and B–X bands of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591–595 (1984).
[CrossRef]

1983 (1)

K. Kohse-Höinghaus, W. Perc, T. Just, “Laser-induced saturated fluorescence as a method for the determination of radical concentrations in flames,” Ber. Bunsenges. Phys. Chem. 87, 1052–1057 (1983).
[CrossRef]

1979 (1)

N. Elander, M. Hehenberger, P. R. Bunker, “Theoretical studies related to time resolved spectroscopy: the iterative Rydberg–Klein–Dunham method and Weyl theory applied to the predissociations in the B state of CH,” Phys. Scr. 20, 631–646 (1979).
[CrossRef]

1975 (2)

J. Hinze, G. C. Lie, “Valence excited states of CH. III. Radiative lifetimes,” Astrophys. J. 196, 621–631 (1975).
[CrossRef]

D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
[CrossRef]

1967 (1)

W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 reaction: rotational relaxation and quenching,” J. Chem. Phys. 46, 7–18 (1967).
[CrossRef]

Andresen, P.

Borman, F.

Brennen, W.

W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 reaction: rotational relaxation and quenching,” J. Chem. Phys. 46, 7–18 (1967).
[CrossRef]

Brinkman, E. A.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

Brown, M. S.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

Bunker, P. R.

N. Elander, M. Hehenberger, P. R. Bunker, “Theoretical studies related to time resolved spectroscopy: the iterative Rydberg–Klein–Dunham method and Weyl theory applied to the predissociations in the B state of CH,” Phys. Scr. 20, 631–646 (1979).
[CrossRef]

Burrows, M.

Carrington, T.

W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 reaction: rotational relaxation and quenching,” J. Chem. Phys. 46, 7–18 (1967).
[CrossRef]

Cattolica, R. J.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-induced fluorescence of the CH molecule in a low-pressure flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363–370 (1984).
[CrossRef]

Chin, T. L.

C. C. Wang, T. L. Chin, K. C. Lin, “Rotational energy transfer of CH in the B (v = 0) state by collisions with Ar and N2O using a time-resolved Fourier transform spectrometer,” J. Chem. Phys. 107, 10348–10349 (1997).
[CrossRef]

Cooper, J. L.

J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH B,” J. Phys. Chem. 98, 8274–8278 (1994).
[CrossRef]

J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH A,” J. Chem. Soc. Faraday Trans. 89, 1287–1290 (1993).
[CrossRef]

Copeland, R. A.

Cottereau, M.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-induced fluorescence of the CH molecule in a low-pressure flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363–370 (1984).
[CrossRef]

Crosley, D. R.

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Absolute CH concentration in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Predissociation rates in the B state of CH,” Chem. Phys. 206, 185–192 (1996).
[CrossRef]

K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohse-Höinghaus, M. L. Wise, D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low pressure flames,” Appl. Opt. 28, 3556–3566 (1989).
[CrossRef] [PubMed]

N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A and B in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef]

N. L. Garland, D. R. Crosley, “Relative transition probability measurements in the A–X and B–X bands of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591–595 (1984).
[CrossRef]

D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
[CrossRef]

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 959–966.
[CrossRef]

M. D. Rumminger, R. W. Dibble, N. H. Heberle, D. R. Crosley, “Gas temperature above a porous radiant burner: comparison of measurements and model predictions,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1755–1762.
[CrossRef]

J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.2),” (SRI International, Menlo Park, Calif., 1998).

Daily, J. W.

R. G. Joklik, J. W. Daily, “LIF study of CH A collision dynamics in a low pressure oxyacetylene flame,” Combust. Flame 69, 211–219 (1987).
[CrossRef]

Dibble, R. W.

M. D. Rumminger, R. W. Dibble, N. H. Heberle, D. R. Crosley, “Gas temperature above a porous radiant burner: comparison of measurements and model predictions,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1755–1762.
[CrossRef]

Dixon, R. N.

R. N. Dixon, D. P. Newton, H. Rieley, “Collisionally induced rotational energy transfer within the A state of CH,” J. Chem. Soc. Faraday Trans. 2 83, 675–682 (1987).
[CrossRef]

Dyer, M. J.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Cambridge, Mass., 1996).

Elander, N.

N. Elander, M. Hehenberger, P. R. Bunker, “Theoretical studies related to time resolved spectroscopy: the iterative Rydberg–Klein–Dunham method and Weyl theory applied to the predissociations in the B state of CH,” Phys. Scr. 20, 631–646 (1979).
[CrossRef]

Fanjoux, G.

J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991).
[CrossRef]

Garland, N. L.

N. L. Garland, D. R. Crosley, “Energy transfer processes in CH A and B in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef]

N. L. Garland, D. R. Crosley, “Relative transition probability measurements in the A–X and B–X bands of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591–595 (1984).
[CrossRef]

Heberle, N. H.

M. D. Rumminger, R. W. Dibble, N. H. Heberle, D. R. Crosley, “Gas temperature above a porous radiant burner: comparison of measurements and model predictions,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1755–1762.
[CrossRef]

Hehenberger, M.

N. Elander, M. Hehenberger, P. R. Bunker, “Theoretical studies related to time resolved spectroscopy: the iterative Rydberg–Klein–Dunham method and Weyl theory applied to the predissociations in the B state of CH,” Phys. Scr. 20, 631–646 (1979).
[CrossRef]

Heidenreich, R.

K. Kohse-Höinghaus, R. Heidenreich, T. Just, “Determination of absolute OH and CH concentrations in a low pressure flame by laser-induced saturated fluorescence,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1177–1185.

Hinze, J.

J. Hinze, G. C. Lie, “Valence excited states of CH. III. Radiative lifetimes,” Astrophys. J. 196, 621–631 (1975).
[CrossRef]

Jeffries, J. B.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohse-Höinghaus, M. L. Wise, D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low pressure flames,” Appl. Opt. 28, 3556–3566 (1989).
[CrossRef] [PubMed]

Joklik, R. G.

R. G. Joklik, J. W. Daily, “LIF study of CH A collision dynamics in a low pressure oxyacetylene flame,” Combust. Flame 69, 211–219 (1987).
[CrossRef]

Jorg, A.

R. Kienle, A. Jorg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH Av′ = 1,” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

Just, T.

K. Kohse-Höinghaus, W. Perc, T. Just, “Laser-induced saturated fluorescence as a method for the determination of radical concentrations in flames,” Ber. Bunsenges. Phys. Chem. 87, 1052–1057 (1983).
[CrossRef]

K. Kohse-Höinghaus, R. Heidenreich, T. Just, “Determination of absolute OH and CH concentrations in a low pressure flame by laser-induced saturated fluorescence,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1177–1185.

Kienle, R.

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH A in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

R. Kienle, A. Jorg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH Av′ = 1,” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

Kohse-Höinghaus, K.

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH A in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

R. Kienle, A. Jorg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH Av′ = 1,” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohse-Höinghaus, M. L. Wise, D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low pressure flames,” Appl. Opt. 28, 3556–3566 (1989).
[CrossRef] [PubMed]

K. Kohse-Höinghaus, W. Perc, T. Just, “Laser-induced saturated fluorescence as a method for the determination of radical concentrations in flames,” Ber. Bunsenges. Phys. Chem. 87, 1052–1057 (1983).
[CrossRef]

K. Kohse-Höinghaus, R. Heidenreich, T. Just, “Determination of absolute OH and CH concentrations in a low pressure flame by laser-induced saturated fluorescence,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1177–1185.

Lavorel, B.

J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991).
[CrossRef]

Lee, M. P.

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH A in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

Lengel, R. K.

D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
[CrossRef]

Li, Y.

W. Q. Qingyu, M. Yang, Y. Li, “Rotational energy transfer within NO A by optical–optical, double-resonance multiphoton ionization spectroscopy,” J. Electrochem. Soc. 137, 3099–3103 (1990).
[CrossRef]

Lie, G. C.

J. Hinze, G. C. Lie, “Valence excited states of CH. III. Radiative lifetimes,” Astrophys. J. 196, 621–631 (1975).
[CrossRef]

Lin, K. C.

C. C. Wang, T. L. Chin, K. C. Lin, “Rotational energy transfer of CH in the B (v = 0) state by collisions with Ar and N2O using a time-resolved Fourier transform spectrometer,” J. Chem. Phys. 107, 10348–10349 (1997).
[CrossRef]

Luque, J.

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Absolute CH concentration in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Predissociation rates in the B state of CH,” Chem. Phys. 206, 185–192 (1996).
[CrossRef]

J. Luque, J. Ruiz, M. Martin, “Rotationally resolved rate constant measurements for removal of CH A and B by ketene,” Laser Chem. 14, 207–216 (1994).
[CrossRef]

J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.2),” (SRI International, Menlo Park, Calif., 1998).

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 959–966.
[CrossRef]

Martin, M.

J. Luque, J. Ruiz, M. Martin, “Rotationally resolved rate constant measurements for removal of CH A and B by ketene,” Laser Chem. 14, 207–216 (1994).
[CrossRef]

Millot, G.

J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991).
[CrossRef]

Newton, D. P.

R. N. Dixon, D. P. Newton, H. Rieley, “Collisionally induced rotational energy transfer within the A state of CH,” J. Chem. Soc. Faraday Trans. 2 83, 675–682 (1987).
[CrossRef]

Nielsen, T.

Perc, W.

K. Kohse-Höinghaus, W. Perc, T. Just, “Laser-induced saturated fluorescence as a method for the determination of radical concentrations in flames,” Ber. Bunsenges. Phys. Chem. 87, 1052–1057 (1983).
[CrossRef]

Puechberty, D.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-induced fluorescence of the CH molecule in a low-pressure flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363–370 (1984).
[CrossRef]

Qingyu, W. Q.

W. Q. Qingyu, M. Yang, Y. Li, “Rotational energy transfer within NO A by optical–optical, double-resonance multiphoton ionization spectroscopy,” J. Electrochem. Soc. 137, 3099–3103 (1990).
[CrossRef]

Raiche, G. A.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

Rensberger, K. J.

Rieley, H.

R. N. Dixon, D. P. Newton, H. Rieley, “Collisionally induced rotational energy transfer within the A state of CH,” J. Chem. Soc. Faraday Trans. 2 83, 675–682 (1987).
[CrossRef]

Ruiz, J.

J. Luque, J. Ruiz, M. Martin, “Rotationally resolved rate constant measurements for removal of CH A and B by ketene,” Laser Chem. 14, 207–216 (1994).
[CrossRef]

Rumminger, M. D.

M. D. Rumminger, R. W. Dibble, N. H. Heberle, D. R. Crosley, “Gas temperature above a porous radiant burner: comparison of measurements and model predictions,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1755–1762.
[CrossRef]

Ruttengberg, P.

J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991).
[CrossRef]

Smith, G. P.

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 959–966.
[CrossRef]

Steinfeld, J. I.

J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991).
[CrossRef]

Stepowski, D.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-induced fluorescence of the CH molecule in a low-pressure flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363–370 (1984).
[CrossRef]

van Dishoeck, E. W.

E. W. van Dishoeck, “Photodissociation processes in the CH molecule,” J. Chem. Phys. 86, 196–214 (1987).
[CrossRef]

Wang, C. C.

C. C. Wang, T. L. Chin, K. C. Lin, “Rotational energy transfer of CH in the B (v = 0) state by collisions with Ar and N2O using a time-resolved Fourier transform spectrometer,” J. Chem. Phys. 107, 10348–10349 (1997).
[CrossRef]

Whitehead, J. C.

J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH B,” J. Phys. Chem. 98, 8274–8278 (1994).
[CrossRef]

J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH A,” J. Chem. Soc. Faraday Trans. 89, 1287–1290 (1993).
[CrossRef]

Wise, M. L.

Yang, M.

W. Q. Qingyu, M. Yang, Y. Li, “Rotational energy transfer within NO A by optical–optical, double-resonance multiphoton ionization spectroscopy,” J. Electrochem. Soc. 137, 3099–3103 (1990).
[CrossRef]

Zachwieja, M.

M. Zachwieja, “New investigations of the A–X band system in the CH radical and a new reduction of the vibration-rotation spectrum of CH from the ATMOS spectra,” J. Molec. Spectrosc. 170, 285–309 (1995).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (3)

R. Kienle, A. Jorg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH Av′ = 1,” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH A in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

J. Luque, D. R. Crosley, “Absolute CH concentration in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

Appl. Phys. B. (1)

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B. 64, 689–697 (1997).
[CrossRef]

Astrophys. J. (1)

J. Hinze, G. C. Lie, “Valence excited states of CH. III. Radiative lifetimes,” Astrophys. J. 196, 621–631 (1975).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

K. Kohse-Höinghaus, W. Perc, T. Just, “Laser-induced saturated fluorescence as a method for the determination of radical concentrations in flames,” Ber. Bunsenges. Phys. Chem. 87, 1052–1057 (1983).
[CrossRef]

Chem. Phys. (1)

J. Luque, D. R. Crosley, “Predissociation rates in the B state of CH,” Chem. Phys. 206, 185–192 (1996).
[CrossRef]

Combust. Flame (1)

R. G. Joklik, J. W. Daily, “LIF study of CH A collision dynamics in a low pressure oxyacetylene flame,” Combust. Flame 69, 211–219 (1987).
[CrossRef]

J. Chem. Phys. (5)

W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 reaction: rotational relaxation and quenching,” J. Chem. Phys. 46, 7–18 (1967).
[CrossRef]

C. C. Wang, T. L. Chin, K. C. Lin, “Rotational energy transfer of CH in the B (v = 0) state by collisions with Ar and N2O using a time-resolved Fourier transform spectrometer,” J. Chem. Phys. 107, 10348–10349 (1997).
[CrossRef]

E. W. van Dishoeck, “Photodissociation processes in the CH molecule,” J. Chem. Phys. 86, 196–214 (1987).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH A,” J. Chem. Soc. Faraday Trans. 89, 1287–1290 (1993).
[CrossRef]

J. Chem. Soc. Faraday Trans. 2 (1)

R. N. Dixon, D. P. Newton, H. Rieley, “Collisionally induced rotational energy transfer within the A state of CH,” J. Chem. Soc. Faraday Trans. 2 83, 675–682 (1987).
[CrossRef]

J. Electrochem. Soc. (1)

W. Q. Qingyu, M. Yang, Y. Li, “Rotational energy transfer within NO A by optical–optical, double-resonance multiphoton ionization spectroscopy,” J. Electrochem. Soc. 137, 3099–3103 (1990).
[CrossRef]

J. Molec. Spectrosc. (1)

M. Zachwieja, “New investigations of the A–X band system in the CH radical and a new reduction of the vibration-rotation spectrum of CH from the ATMOS spectra,” J. Molec. Spectrosc. 170, 285–309 (1995).
[CrossRef]

J. Phys. Chem. (2)

J. I. Steinfeld, P. Ruttengberg, G. Millot, G. Fanjoux, B. Lavorel, “Scaling laws for inelastic collision processes in diatomic molecules,” J. Phys. Chem. 95, 9638–9647 (1991).
[CrossRef]

J. L. Cooper, J. C. Whitehead, “Rotational and vibrational energy transfer in CH B,” J. Phys. Chem. 98, 8274–8278 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-induced fluorescence of the CH molecule in a low-pressure flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363–370 (1984).
[CrossRef]

D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975).
[CrossRef]

N. L. Garland, D. R. Crosley, “Relative transition probability measurements in the A–X and B–X bands of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591–595 (1984).
[CrossRef]

Laser Chem. (1)

J. Luque, J. Ruiz, M. Martin, “Rotationally resolved rate constant measurements for removal of CH A and B by ketene,” Laser Chem. 14, 207–216 (1994).
[CrossRef]

Phys. Scr. (1)

N. Elander, M. Hehenberger, P. R. Bunker, “Theoretical studies related to time resolved spectroscopy: the iterative Rydberg–Klein–Dunham method and Weyl theory applied to the predissociations in the B state of CH,” Phys. Scr. 20, 631–646 (1979).
[CrossRef]

Other (6)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Cambridge, Mass., 1996).

J. Luque, G. P. Smith, D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 959–966.
[CrossRef]

K. Kohse-Höinghaus, R. Heidenreich, T. Just, “Determination of absolute OH and CH concentrations in a low pressure flame by laser-induced saturated fluorescence,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1177–1185.

J. Luque, D. R. Crosley, “LIFBASE: database and spectral simulation program (Version 1.2),” (SRI International, Menlo Park, Calif., 1998).

LUQUE@MPLVAX.SRI.COM; DRC@MPLVAX.SRI.COM; http://www.sri.com/cem/lifbase .

M. D. Rumminger, R. W. Dibble, N. H. Heberle, D. R. Crosley, “Gas temperature above a porous radiant burner: comparison of measurements and model predictions,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1755–1762.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Top, section of the Q branch of the CH AX (0, 0) excitation LIF scan in an 8-Torr CH4/O2 flame taken with a 10-ns gate. Bottom, section of the Q branch of the CH AX (0, 1) excitation scan with a 10-ns gate and collection of the fluorescence in the CH AX (0, 0) region. The horizontal scale is in vacuum wavelengths.

Fig. 2
Fig. 2

Top, section of the R branch of the CH BX (0, 0) excitation LIF scan in an 8-Torr CH4/O2 flame taken with a 10-ns integration gate. Bottom, section of the R branch of the CH BX (0, 1) excitation scan with a 10-ns gate and collection of the fluorescence in the CH BX (0, 0) region.

Fig. 3
Fig. 3

Variation of the effective lifetime with vibrational number. Semilogarithmic plot of the fluorescence decays of CH A 2Δ v′ = 0, 1 and 2 in a CH4/O2 flame at 8 Torr along the linear fits and the corresponding lifetimes.

Fig. 4
Fig. 4

Effect of the integration gate time (t g ) on the variation of the fluorescence signal with the effective fluorescence time (τeff).

Fig. 5
Fig. 5

Upper part, representation of the Q-branch relative transition probabilities versus rotational product number N′(N′ + 1) for the transitions AX (0, 0) and BX (0, 0) from the calculation with optimized transition moments and RKR wave functions as described by Luque and Crosley.4,5 Lower section, representation of the off-diagonal transitions AX (0, 1) and BX (0, 1) from the same calculations.

Fig. 6
Fig. 6

Boltzmann plot of relative populations in CH X 2Π, v″ = 0 from the LIF excitation scan of CH BX (0, 0), Fig. 2, with short integration time. The squares indicate the analysis without rotational transition probabilities; the circles indicate the corrected data. The filled symbols refer to spin-orbit F 1 levels; the open symbols refer to F 2 levels.

Fig. 7
Fig. 7

Effect of saturation on the LIF temperatures. Temperatures were obtained through excitation scans in the Q branch CH AX (0, 0) versus the laser irradiance. The degree of saturation is represented by the ratio R 21(2)/R 1(2), which is 0.15 in the linear regime and increases with saturation by laser irradiance.

Fig. 8
Fig. 8

Variation of the effective lifetime with rotational number for CH A 2Δ, v′ = 0 and B 2Σ-, v′ = 0 in the 8-Torr CH4/O2 flame at 0.9 cm above the burner.

Fig. 9
Fig. 9

Upper panel, fluorescence-dispersed scan of CH B 2Σ-, v′ = 0 in an 8-Torr CH4/O2 flame taken after CH B 2Σ-, v′ = 0, N′ = 8 was pumped with an integration gate of 10 ns and a resolution of 5-Å FWHM. The experimental data and a simulated spectrum are shown, and the retrieved populations appear in the inset. Lower panel, logarithmic representation of the rotational relaxation rates, experimentally derived from fluorescence spectra after B 2Σ-, v′ = 0N′ = 8 and 14 was pumped versus the energy gap ΔE/ B v . The line is the linear fit to all the rates and the parameters are α = 1.3 and a = 4.5 × 107 s-1.

Fig. 10
Fig. 10

Fluorescence-dispersed scan of CH B 2Σ-, v′ = 0 in an 8-Torr CH4/O2 flame taken after CH B 2Σ-, v′ = 0, N′ = 8 was pumped with an integration gate of 250 ns and a resolution of 5-Å FWHM. The experimental data are compared with the simulated spectra resulting from the EGL and the SPG models; the populations calculated from this model after a 250-ns integration time are presented in the inset.

Fig. 11
Fig. 11

Same as Fig. 10 but for pumping CH B 2Σ-, v′ = 0, N′ = 14 and a 100-ns detection gate.

Fig. 12
Fig. 12

Fluorescence and predissociation quantum yields predicted by the SPG model for the CH B 2Σ-, v′ = 0 state in the CH4/O2 flame at 8 Torr and 1950 K.

Tables (2)

Tables Icon

Table 1 Summary of Transition Probability γ Factors Useful for Temperature Corrections in the CH A 2Δ–X 2Π and CH B 2Σ-–X 2Π Bandsa

Tables Icon

Table 2 Summary of the LIF Rotational Temperatures Obtained in the CH4/O2 Flame at 8 Torr in the Peak of the CH Concentration, Specifying the Experimental Fluorescence Gating Conditions and the Corrections in the Analysis

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Sit=D Njt=0τj exp-t/τeff,
Njt=0=NiBijILτL.
Sitg0=D tgτj NiBijILτL,
Sitg =DΦjNiBijILτL.
lnSiBijILFjgi=-ErotNikTrot+ln DτL,
pvNvN=0 ΨvNrRerΨvNrdr2=pvv1-βvvNN+1,
Ttrue=Tapparent1-γt,sTapparent.
RNiNf=2Nf+1kif exp-ENi-ENkT,  kifSPG=a|Ef-Ei|Bv-α,  kifEGL=b exp-β|Ef-Ei|kT,
dnidt=-Ai+Qi+Pini+ijRjinj-Rijni.
RifnftnitΔt.

Metrics