Abstract

Laser photofragmentation (PF) and subsequent nitric oxide (NO) laser-induced fluorescence (LIF) have been developed to measure the concentration of energetic materials (EM’s), such as 2,4,6-trinitrotoluene (TNT), in soil and other media. Gas-phase EM’s photodissociate, releasing NO2, when exposed to laser radiation near 226 nm. Laser-excited NO2 predissociates to form NO that gives an intense fluorescence when excited near 226 nm. The EM concentration is inferred from the intensity of the NO fluorescence. A PF-LIF laser-based sensor is being developed to be used with the U.S. Army Corps of Engineers’ Waterways Experiment Station’s cone penetrometer to measure in situ the concentration of subsurface TNT. Several factors that affect the PF-LIF signal waveforms, such as sample temperature, laser power, and heating time, were investigated. Also, effects on the PF-LIF signal of adding water and fertilizer to the TNT mixtures were studied. Decay times were determined by least-squares fitting of the exponential PF-LIF signal waveforms. The use of PF-LIF waveforms promises to enable diagnostics of the sample’s characteristics that would otherwise not be possible in situ.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Canter, Nitrates In Groundwater (CRC Press, Boca Raton, Fla., 1997), pp. 39–71.
  2. A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst 118, 601–607 (1993).
    [CrossRef]
  3. F. W. S. Carver, D. P. Wyndham, T. J. Sinclair, “Spectroscopic studies of explosives II—detection of nitro compounds in silica and glass with a Raman microprobe,” J. Raman Spectrosc. 16, 332–336 (1985).
    [CrossRef]
  4. D. L. Eck, M. J. Kurth, C. Macmillan, Immunochemical Methods for Environmental Analysis, Vol. 442 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), pp. 79–94.
  5. W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
    [CrossRef]
  6. C. Jian, W. R. Seitz, “Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching,” Anal. Chim. Acta 237, 265–271 (1990).
    [CrossRef]
  7. M. J. McQuaid, R. C. Sausa, “Absorption cross sections of gaseous dimethylnitramine at selected wavelengths between 185 and 325 nm,” Appl. Spectrosc. 45, 916–917 (1991).
    [CrossRef]
  8. K. J. Smit, “Ultraviolet and visible absorption spectroscopy of some energetic molecules in the solid state,” J. Eng. Mater. 9, 81–103 (1991).
  9. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
    [CrossRef]
  10. D. Wu, J. P. Singh, F. Y. Yueh, D. L. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
    [CrossRef] [PubMed]
  11. D. Wu, “Detection of 2,4,6-trinitrotoluene by photofragmentation–laser induced fluorescence (PF-LIF) spectroscopy,” M.S. thesis (Mississippi State University, Mississippi State, Miss., 1996); Masters Abstr. Int. 34, 2390 (1996).
  12. G. M. Boudreaux, “Development of a photofragmentation–laser induced fluorescence (PF-LIF) laser sensor for detection of 2,4,6-trinitrotoluene (TNT) in soil and groundwater,” M.S. thesis (Mississippi State University, Mississippi State, Miss., 1997); Masters Abstr. Int. 36, 201–202 (1998).
  13. G. A. Raichem, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2Π states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
    [CrossRef]

1997 (1)

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

1996 (2)

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

D. Wu, J. P. Singh, F. Y. Yueh, D. L. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
[CrossRef] [PubMed]

1993 (1)

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

1991 (2)

M. J. McQuaid, R. C. Sausa, “Absorption cross sections of gaseous dimethylnitramine at selected wavelengths between 185 and 325 nm,” Appl. Spectrosc. 45, 916–917 (1991).
[CrossRef]

K. J. Smit, “Ultraviolet and visible absorption spectroscopy of some energetic molecules in the solid state,” J. Eng. Mater. 9, 81–103 (1991).

1990 (2)

G. A. Raichem, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2Π states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

C. Jian, W. R. Seitz, “Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching,” Anal. Chim. Acta 237, 265–271 (1990).
[CrossRef]

1985 (1)

F. W. S. Carver, D. P. Wyndham, T. J. Sinclair, “Spectroscopic studies of explosives II—detection of nitro compounds in silica and glass with a Raman microprobe,” J. Raman Spectrosc. 16, 332–336 (1985).
[CrossRef]

Adams, J.

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

Boudreaux, G. M.

G. M. Boudreaux, “Development of a photofragmentation–laser induced fluorescence (PF-LIF) laser sensor for detection of 2,4,6-trinitrotoluene (TNT) in soil and groundwater,” M.S. thesis (Mississippi State University, Mississippi State, Miss., 1997); Masters Abstr. Int. 36, 201–202 (1998).

Buttner, W. J.

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

Canter, W. L.

W. L. Canter, Nitrates In Groundwater (CRC Press, Boca Raton, Fla., 1997), pp. 39–71.

Carver, F. W. S.

F. W. S. Carver, D. P. Wyndham, T. J. Sinclair, “Spectroscopic studies of explosives II—detection of nitro compounds in silica and glass with a Raman microprobe,” J. Raman Spectrosc. 16, 332–336 (1985).
[CrossRef]

Cespedes, E. R.

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

Clark, A.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Cooper, S. S.

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

Crosley, D. R.

G. A. Raichem, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2Π states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

Davis, W. M.

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

Eck, D. L.

D. L. Eck, M. J. Kurth, C. Macmillan, Immunochemical Methods for Environmental Analysis, Vol. 442 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), pp. 79–94.

Findlay, M.

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

Jian, C.

C. Jian, W. R. Seitz, “Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching,” Anal. Chim. Acta 237, 265–271 (1990).
[CrossRef]

Kurth, M. J.

D. L. Eck, M. J. Kurth, C. Macmillan, Immunochemical Methods for Environmental Analysis, Vol. 442 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), pp. 79–94.

Ledingham, K. W. D.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Macmillan, C.

D. L. Eck, M. J. Kurth, C. Macmillan, Immunochemical Methods for Environmental Analysis, Vol. 442 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), pp. 79–94.

Marshall, A.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

McQuaid, M. J.

Monts, D. L.

Raichem, G. A.

G. A. Raichem, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2Π states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

Sander, J.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

M. J. McQuaid, R. C. Sausa, “Absorption cross sections of gaseous dimethylnitramine at selected wavelengths between 185 and 325 nm,” Appl. Spectrosc. 45, 916–917 (1991).
[CrossRef]

Seitz, W. R.

C. Jian, W. R. Seitz, “Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching,” Anal. Chim. Acta 237, 265–271 (1990).
[CrossRef]

Simeonsson, J. B.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

Sinclair, T. J.

F. W. S. Carver, D. P. Wyndham, T. J. Sinclair, “Spectroscopic studies of explosives II—detection of nitro compounds in silica and glass with a Raman microprobe,” J. Raman Spectrosc. 16, 332–336 (1985).
[CrossRef]

Singh, J. P.

Singhal, R. P.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Smit, K. J.

K. J. Smit, “Ultraviolet and visible absorption spectroscopy of some energetic molecules in the solid state,” J. Eng. Mater. 9, 81–103 (1991).

Vickers, W. C.

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

Wu, D.

D. Wu, J. P. Singh, F. Y. Yueh, D. L. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
[CrossRef] [PubMed]

D. Wu, “Detection of 2,4,6-trinitrotoluene by photofragmentation–laser induced fluorescence (PF-LIF) spectroscopy,” M.S. thesis (Mississippi State University, Mississippi State, Miss., 1996); Masters Abstr. Int. 34, 2390 (1996).

Wyndham, D. P.

F. W. S. Carver, D. P. Wyndham, T. J. Sinclair, “Spectroscopic studies of explosives II—detection of nitro compounds in silica and glass with a Raman microprobe,” J. Raman Spectrosc. 16, 332–336 (1985).
[CrossRef]

Yueh, F. Y.

Anal. Chim. Acta (2)

W. J. Buttner, M. Findlay, W. C. Vickers, W. M. Davis, E. R. Cespedes, S. S. Cooper, J. Adams, “In situ detection of trinitrotoluene and other nitrated explosives in soils,” Anal. Chim. Acta 341, 63–71 (1997).
[CrossRef]

C. Jian, W. R. Seitz, “Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching,” Anal. Chim. Acta 237, 265–271 (1990).
[CrossRef]

Analyst (1)

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitromatic vapours using resonance enhanced multiphoton ionization mass spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996).
[CrossRef]

J. Chem. Phys. (1)

G. A. Raichem, D. R. Crosley, “Temperature dependent quenching of the A2Σ+ and B2Π states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

J. Eng. Mater. (1)

K. J. Smit, “Ultraviolet and visible absorption spectroscopy of some energetic molecules in the solid state,” J. Eng. Mater. 9, 81–103 (1991).

J. Raman Spectrosc. (1)

F. W. S. Carver, D. P. Wyndham, T. J. Sinclair, “Spectroscopic studies of explosives II—detection of nitro compounds in silica and glass with a Raman microprobe,” J. Raman Spectrosc. 16, 332–336 (1985).
[CrossRef]

Other (4)

D. L. Eck, M. J. Kurth, C. Macmillan, Immunochemical Methods for Environmental Analysis, Vol. 442 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), pp. 79–94.

W. L. Canter, Nitrates In Groundwater (CRC Press, Boca Raton, Fla., 1997), pp. 39–71.

D. Wu, “Detection of 2,4,6-trinitrotoluene by photofragmentation–laser induced fluorescence (PF-LIF) spectroscopy,” M.S. thesis (Mississippi State University, Mississippi State, Miss., 1996); Masters Abstr. Int. 34, 2390 (1996).

G. M. Boudreaux, “Development of a photofragmentation–laser induced fluorescence (PF-LIF) laser sensor for detection of 2,4,6-trinitrotoluene (TNT) in soil and groundwater,” M.S. thesis (Mississippi State University, Mississippi State, Miss., 1997); Masters Abstr. Int. 36, 201–202 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Potential-energy-level diagram of NO and NO2.

Fig. 2
Fig. 2

PF-LIF experimental setup.

Fig. 3
Fig. 3

(a) PF-LIF signal for 400 mg of 500-ppm TNT in simulated soil, (b) PF-LIF signal for 400 mg of 100-ppm TNT in simulated soil.

Fig. 4
Fig. 4

PF-LIF signal intensity versus laser power for 400 mg of 100-ppm TNT in simulated soil at different sample temperatures.

Fig. 5
Fig. 5

PF-LIF signal for 400 mg of 100-ppm TNT in simulated soil plus 40 mg of fertilizer.

Fig. 6
Fig. 6

Recovered PF-LIF signal for 400 mg of 500-ppm TNT in simulated soil plus 40 mg of water.

Tables (3)

Tables Icon

Table 1 Fertilizer PF-LIF Signals at 423 K

Tables Icon

Table 2 Water PF-LIF Signals at 373 K

Tables Icon

Table 3 Decay Parameters for PF-LIF Waveforms of 500-ppm TNT in Simulated Soil

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y=a exp-t/b+c exp-t/d,

Metrics