Abstract

Results of our laser-induced fluorescence (LIF) and diffuse-reflectance investigations of quartz sand and different soils spiked with Diesel fuel are reported. The LIF calibration functions, which were found to be significantly different for the various matrices, and the limits of detection were determined. For excitation at λex = 266 nm, the limits of detection obtained ranged from 7 parts in 106 for quartz sand to ∼200 parts in 106 for dark sand with organic matter and for dark peat. Furthermore, the diffuse-reflectance spectra of the matrices in the ultraviolet–near-IR range were determined. An attempt to correlate the slopes of the LIF calibration functions with the reflectances of the matrices is presented. The obtained normalized calibration functions are well suited to take into account relevant optical soil parameters and to reduce the variability of the LIF calibration behavior significantly.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Lieberman, G. A. Theriault, S. S. Cooper, P. G. Malone, R. S. Olsen, P. W. Lurk, “Rapid, subsurface, in situ field screening of petroleum hydrocarbon contamination using laser induced fluorescence over optical fibers,” in Proceedings of the Second International Symposium on Field Screening Methods of Hazardous Wastes and Toxic Chemicals (Air and Waste Management Association, Pittsburgh, Pa., 1991, pp. 57–63.
  2. D. S. Knowles, S. H. Lieberman, “Field results from the SCAPS laser-induced fluorescence (LIF) sensor for in-situ, subsurface detection of petroleum hydrocarbons,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 297–307 (1995).
    [CrossRef]
  3. S. H. Lieberman, “Direct-push, fluorescence-based sensor systems for in-situ measurement of petroleum hydrocarbons in soils,” Field Anal. Chem. Technol. 2, 63–73 (1998).
    [CrossRef]
  4. G. Bujewski, B. Rutherford, “The site characterization and analysis penetrometer system (SCAPS) laser-induced sensor and support system,” (Environmental Protection Agency, Washington, D.C., 1997); “The rapid optical screening tool (ROSTTM) laser-induced fluorescence (LIF) system for screening of petroleum hydrocarbons in subsurface soils,” (Environmental Protection Agency, Washington, D.C., 1997).
  5. J. H. Aldstadt, A. F. Martin, “Analytical chemistry and the cone penetrometer: in situ chemical characterization of subsurface environments,” Microchim. Acta 127, 1–18 (1997).
    [CrossRef]
  6. S. J. Hart, Y.-M. Chen, J. E. Kenny, B. K. Lien, T. W. Best, “Field Demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle,” Field Anal. Chem. Technol. 1, 343–357 (1997).
    [CrossRef]
  7. H.-G. Löhmannsröben, C. Kauffmann, Th. Roch, “Spectroscopic properties of petroleum products in solution for in-situ analysis of oil contaminations,” in Remote Sensing of Vegetation and Water, and Standardization of Remote Sensing Methods, G. Cecchi, T. Lamp, R. Reuter, K. Weber, eds., Proc. SPIE3107, 305–314 (1997).
    [CrossRef]
  8. C. Y. Ralston, X. Wu, O. C. Mullins, “Quantum yields of crude oils,” Appl. Spectrosc. 50, 1563–1568 (1996).
    [CrossRef]
  9. B. J. Nielsen, G. Gillispie, D. A. Bohne, D. R. Lindstrom, “A new site characterization and monitoring technology,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 278–291 (1995).
    [CrossRef]
  10. M. U. Kumke, H.-G. Löhmannsröben, Th. Roch, “Fluorescence spectroscopy of polynuclear aromatic compounds in environmental monitoring,” J. Fluoresc. 5, 139–153 (1995).
    [CrossRef] [PubMed]
  11. H.-G. Löhmannsröben, Th. Roch, “In-situ LIF analysis of polynuclear aromatic compounds (PAC) and mineral oils in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 128–134 (1996).
    [CrossRef]
  12. H.-G. Löhmannsröben, Th. Roch, “Laserfluoreszenzspektroskopie als extraktionsfreies Nachweisverfahren für PAK und Mineralöle in Bodenproben,” Anal. Taschenbuch 15, 217–253 (1996).
    [CrossRef]
  13. S. J. Hart, Y.-M. Chen, B. K. Lien, J. E. Kenny, “A fiber optic multichannel laser spectrometer system for remote fluorescence detection in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 73–82 (1996).
    [CrossRef]
  14. W. Schade, J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
    [CrossRef]
  15. H.-G. Löhmannsröben, Th. Roch, R. H. Schultze, “Laser-induced fluorescence (LIF) spectroscopy for in-situ analysis of petroleum products and biological oils,” Polycy. Aromat. Compounds (to be published).
  16. E. R. Stoner, M. F. Baumgardner, “Characteristic variations in reflectance of surface soils,” Soil Sci. Soc. Am. J. 45, 1161–1165 (1981).
    [CrossRef]
  17. M. F. Baumgardner, L. F. Silva, L. L. Biehl, E. R. Stoner, “Reflectance properties of soils,” Adv. Agron. 38, 1–44 (1985).
    [CrossRef]
  18. S. A. Bowers, R. J. Hanks, “Reflection of radiant energy from soils,” Soil Sci. 100, 130–138 (1965).
    [CrossRef]
  19. M. M. Valeriano, J. C. N. Epiphanio, A. R. Formaggio, J. B. Oliveira, “Bi-directional reflectance factor of 14 soil classes from Brazil,” Int. J. Remote Sensing 16, 113–128 (1995).
    [CrossRef]
  20. “Munsell soil color charts,” MacBeth Division of Kollmorgen Corp., Baltimore, Md. (1975).
  21. T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: A quantitative approach,” EARSeL Adv. Remote Sensing 1, 52–60 (1992).

1998

S. H. Lieberman, “Direct-push, fluorescence-based sensor systems for in-situ measurement of petroleum hydrocarbons in soils,” Field Anal. Chem. Technol. 2, 63–73 (1998).
[CrossRef]

1997

J. H. Aldstadt, A. F. Martin, “Analytical chemistry and the cone penetrometer: in situ chemical characterization of subsurface environments,” Microchim. Acta 127, 1–18 (1997).
[CrossRef]

S. J. Hart, Y.-M. Chen, J. E. Kenny, B. K. Lien, T. W. Best, “Field Demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle,” Field Anal. Chem. Technol. 1, 343–357 (1997).
[CrossRef]

1996

C. Y. Ralston, X. Wu, O. C. Mullins, “Quantum yields of crude oils,” Appl. Spectrosc. 50, 1563–1568 (1996).
[CrossRef]

H.-G. Löhmannsröben, Th. Roch, “Laserfluoreszenzspektroskopie als extraktionsfreies Nachweisverfahren für PAK und Mineralöle in Bodenproben,” Anal. Taschenbuch 15, 217–253 (1996).
[CrossRef]

W. Schade, J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

1995

M. U. Kumke, H.-G. Löhmannsröben, Th. Roch, “Fluorescence spectroscopy of polynuclear aromatic compounds in environmental monitoring,” J. Fluoresc. 5, 139–153 (1995).
[CrossRef] [PubMed]

M. M. Valeriano, J. C. N. Epiphanio, A. R. Formaggio, J. B. Oliveira, “Bi-directional reflectance factor of 14 soil classes from Brazil,” Int. J. Remote Sensing 16, 113–128 (1995).
[CrossRef]

1992

T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: A quantitative approach,” EARSeL Adv. Remote Sensing 1, 52–60 (1992).

1985

M. F. Baumgardner, L. F. Silva, L. L. Biehl, E. R. Stoner, “Reflectance properties of soils,” Adv. Agron. 38, 1–44 (1985).
[CrossRef]

1981

E. R. Stoner, M. F. Baumgardner, “Characteristic variations in reflectance of surface soils,” Soil Sci. Soc. Am. J. 45, 1161–1165 (1981).
[CrossRef]

1965

S. A. Bowers, R. J. Hanks, “Reflection of radiant energy from soils,” Soil Sci. 100, 130–138 (1965).
[CrossRef]

Aldstadt, J. H.

J. H. Aldstadt, A. F. Martin, “Analytical chemistry and the cone penetrometer: in situ chemical characterization of subsurface environments,” Microchim. Acta 127, 1–18 (1997).
[CrossRef]

Baumgardner, M. F.

M. F. Baumgardner, L. F. Silva, L. L. Biehl, E. R. Stoner, “Reflectance properties of soils,” Adv. Agron. 38, 1–44 (1985).
[CrossRef]

E. R. Stoner, M. F. Baumgardner, “Characteristic variations in reflectance of surface soils,” Soil Sci. Soc. Am. J. 45, 1161–1165 (1981).
[CrossRef]

Best, T. W.

S. J. Hart, Y.-M. Chen, J. E. Kenny, B. K. Lien, T. W. Best, “Field Demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle,” Field Anal. Chem. Technol. 1, 343–357 (1997).
[CrossRef]

Biehl, L. L.

M. F. Baumgardner, L. F. Silva, L. L. Biehl, E. R. Stoner, “Reflectance properties of soils,” Adv. Agron. 38, 1–44 (1985).
[CrossRef]

Bohne, D. A.

B. J. Nielsen, G. Gillispie, D. A. Bohne, D. R. Lindstrom, “A new site characterization and monitoring technology,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 278–291 (1995).
[CrossRef]

Bowers, S. A.

S. A. Bowers, R. J. Hanks, “Reflection of radiant energy from soils,” Soil Sci. 100, 130–138 (1965).
[CrossRef]

Bublitz, J.

W. Schade, J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Bujewski, G.

G. Bujewski, B. Rutherford, “The site characterization and analysis penetrometer system (SCAPS) laser-induced sensor and support system,” (Environmental Protection Agency, Washington, D.C., 1997); “The rapid optical screening tool (ROSTTM) laser-induced fluorescence (LIF) system for screening of petroleum hydrocarbons in subsurface soils,” (Environmental Protection Agency, Washington, D.C., 1997).

Chen, Y.-M.

S. J. Hart, Y.-M. Chen, J. E. Kenny, B. K. Lien, T. W. Best, “Field Demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle,” Field Anal. Chem. Technol. 1, 343–357 (1997).
[CrossRef]

S. J. Hart, Y.-M. Chen, B. K. Lien, J. E. Kenny, “A fiber optic multichannel laser spectrometer system for remote fluorescence detection in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 73–82 (1996).
[CrossRef]

Cooper, S. S.

S. H. Lieberman, G. A. Theriault, S. S. Cooper, P. G. Malone, R. S. Olsen, P. W. Lurk, “Rapid, subsurface, in situ field screening of petroleum hydrocarbon contamination using laser induced fluorescence over optical fibers,” in Proceedings of the Second International Symposium on Field Screening Methods of Hazardous Wastes and Toxic Chemicals (Air and Waste Management Association, Pittsburgh, Pa., 1991, pp. 57–63.

Epiphanio, J. C. N.

M. M. Valeriano, J. C. N. Epiphanio, A. R. Formaggio, J. B. Oliveira, “Bi-directional reflectance factor of 14 soil classes from Brazil,” Int. J. Remote Sensing 16, 113–128 (1995).
[CrossRef]

Formaggio, A. R.

M. M. Valeriano, J. C. N. Epiphanio, A. R. Formaggio, J. B. Oliveira, “Bi-directional reflectance factor of 14 soil classes from Brazil,” Int. J. Remote Sensing 16, 113–128 (1995).
[CrossRef]

Gillispie, G.

B. J. Nielsen, G. Gillispie, D. A. Bohne, D. R. Lindstrom, “A new site characterization and monitoring technology,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 278–291 (1995).
[CrossRef]

Hanks, R. J.

S. A. Bowers, R. J. Hanks, “Reflection of radiant energy from soils,” Soil Sci. 100, 130–138 (1965).
[CrossRef]

Hart, S. J.

S. J. Hart, Y.-M. Chen, J. E. Kenny, B. K. Lien, T. W. Best, “Field Demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle,” Field Anal. Chem. Technol. 1, 343–357 (1997).
[CrossRef]

S. J. Hart, Y.-M. Chen, B. K. Lien, J. E. Kenny, “A fiber optic multichannel laser spectrometer system for remote fluorescence detection in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 73–82 (1996).
[CrossRef]

Hengstermann, T.

T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: A quantitative approach,” EARSeL Adv. Remote Sensing 1, 52–60 (1992).

Kauffmann, C.

H.-G. Löhmannsröben, C. Kauffmann, Th. Roch, “Spectroscopic properties of petroleum products in solution for in-situ analysis of oil contaminations,” in Remote Sensing of Vegetation and Water, and Standardization of Remote Sensing Methods, G. Cecchi, T. Lamp, R. Reuter, K. Weber, eds., Proc. SPIE3107, 305–314 (1997).
[CrossRef]

Kenny, J. E.

S. J. Hart, Y.-M. Chen, J. E. Kenny, B. K. Lien, T. W. Best, “Field Demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle,” Field Anal. Chem. Technol. 1, 343–357 (1997).
[CrossRef]

S. J. Hart, Y.-M. Chen, B. K. Lien, J. E. Kenny, “A fiber optic multichannel laser spectrometer system for remote fluorescence detection in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 73–82 (1996).
[CrossRef]

Knowles, D. S.

D. S. Knowles, S. H. Lieberman, “Field results from the SCAPS laser-induced fluorescence (LIF) sensor for in-situ, subsurface detection of petroleum hydrocarbons,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 297–307 (1995).
[CrossRef]

Kumke, M. U.

M. U. Kumke, H.-G. Löhmannsröben, Th. Roch, “Fluorescence spectroscopy of polynuclear aromatic compounds in environmental monitoring,” J. Fluoresc. 5, 139–153 (1995).
[CrossRef] [PubMed]

Lieberman, S. H.

S. H. Lieberman, “Direct-push, fluorescence-based sensor systems for in-situ measurement of petroleum hydrocarbons in soils,” Field Anal. Chem. Technol. 2, 63–73 (1998).
[CrossRef]

D. S. Knowles, S. H. Lieberman, “Field results from the SCAPS laser-induced fluorescence (LIF) sensor for in-situ, subsurface detection of petroleum hydrocarbons,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 297–307 (1995).
[CrossRef]

S. H. Lieberman, G. A. Theriault, S. S. Cooper, P. G. Malone, R. S. Olsen, P. W. Lurk, “Rapid, subsurface, in situ field screening of petroleum hydrocarbon contamination using laser induced fluorescence over optical fibers,” in Proceedings of the Second International Symposium on Field Screening Methods of Hazardous Wastes and Toxic Chemicals (Air and Waste Management Association, Pittsburgh, Pa., 1991, pp. 57–63.

Lien, B. K.

S. J. Hart, Y.-M. Chen, J. E. Kenny, B. K. Lien, T. W. Best, “Field Demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle,” Field Anal. Chem. Technol. 1, 343–357 (1997).
[CrossRef]

S. J. Hart, Y.-M. Chen, B. K. Lien, J. E. Kenny, “A fiber optic multichannel laser spectrometer system for remote fluorescence detection in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 73–82 (1996).
[CrossRef]

Lindstrom, D. R.

B. J. Nielsen, G. Gillispie, D. A. Bohne, D. R. Lindstrom, “A new site characterization and monitoring technology,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 278–291 (1995).
[CrossRef]

Löhmannsröben, H.-G.

H.-G. Löhmannsröben, Th. Roch, “Laserfluoreszenzspektroskopie als extraktionsfreies Nachweisverfahren für PAK und Mineralöle in Bodenproben,” Anal. Taschenbuch 15, 217–253 (1996).
[CrossRef]

M. U. Kumke, H.-G. Löhmannsröben, Th. Roch, “Fluorescence spectroscopy of polynuclear aromatic compounds in environmental monitoring,” J. Fluoresc. 5, 139–153 (1995).
[CrossRef] [PubMed]

H.-G. Löhmannsröben, Th. Roch, “In-situ LIF analysis of polynuclear aromatic compounds (PAC) and mineral oils in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 128–134 (1996).
[CrossRef]

H.-G. Löhmannsröben, C. Kauffmann, Th. Roch, “Spectroscopic properties of petroleum products in solution for in-situ analysis of oil contaminations,” in Remote Sensing of Vegetation and Water, and Standardization of Remote Sensing Methods, G. Cecchi, T. Lamp, R. Reuter, K. Weber, eds., Proc. SPIE3107, 305–314 (1997).
[CrossRef]

H.-G. Löhmannsröben, Th. Roch, R. H. Schultze, “Laser-induced fluorescence (LIF) spectroscopy for in-situ analysis of petroleum products and biological oils,” Polycy. Aromat. Compounds (to be published).

Lurk, P. W.

S. H. Lieberman, G. A. Theriault, S. S. Cooper, P. G. Malone, R. S. Olsen, P. W. Lurk, “Rapid, subsurface, in situ field screening of petroleum hydrocarbon contamination using laser induced fluorescence over optical fibers,” in Proceedings of the Second International Symposium on Field Screening Methods of Hazardous Wastes and Toxic Chemicals (Air and Waste Management Association, Pittsburgh, Pa., 1991, pp. 57–63.

Malone, P. G.

S. H. Lieberman, G. A. Theriault, S. S. Cooper, P. G. Malone, R. S. Olsen, P. W. Lurk, “Rapid, subsurface, in situ field screening of petroleum hydrocarbon contamination using laser induced fluorescence over optical fibers,” in Proceedings of the Second International Symposium on Field Screening Methods of Hazardous Wastes and Toxic Chemicals (Air and Waste Management Association, Pittsburgh, Pa., 1991, pp. 57–63.

Martin, A. F.

J. H. Aldstadt, A. F. Martin, “Analytical chemistry and the cone penetrometer: in situ chemical characterization of subsurface environments,” Microchim. Acta 127, 1–18 (1997).
[CrossRef]

Mullins, O. C.

Nielsen, B. J.

B. J. Nielsen, G. Gillispie, D. A. Bohne, D. R. Lindstrom, “A new site characterization and monitoring technology,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 278–291 (1995).
[CrossRef]

Oliveira, J. B.

M. M. Valeriano, J. C. N. Epiphanio, A. R. Formaggio, J. B. Oliveira, “Bi-directional reflectance factor of 14 soil classes from Brazil,” Int. J. Remote Sensing 16, 113–128 (1995).
[CrossRef]

Olsen, R. S.

S. H. Lieberman, G. A. Theriault, S. S. Cooper, P. G. Malone, R. S. Olsen, P. W. Lurk, “Rapid, subsurface, in situ field screening of petroleum hydrocarbon contamination using laser induced fluorescence over optical fibers,” in Proceedings of the Second International Symposium on Field Screening Methods of Hazardous Wastes and Toxic Chemicals (Air and Waste Management Association, Pittsburgh, Pa., 1991, pp. 57–63.

Ralston, C. Y.

Reuter, R.

T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: A quantitative approach,” EARSeL Adv. Remote Sensing 1, 52–60 (1992).

Roch, Th.

H.-G. Löhmannsröben, Th. Roch, “Laserfluoreszenzspektroskopie als extraktionsfreies Nachweisverfahren für PAK und Mineralöle in Bodenproben,” Anal. Taschenbuch 15, 217–253 (1996).
[CrossRef]

M. U. Kumke, H.-G. Löhmannsröben, Th. Roch, “Fluorescence spectroscopy of polynuclear aromatic compounds in environmental monitoring,” J. Fluoresc. 5, 139–153 (1995).
[CrossRef] [PubMed]

H.-G. Löhmannsröben, Th. Roch, “In-situ LIF analysis of polynuclear aromatic compounds (PAC) and mineral oils in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 128–134 (1996).
[CrossRef]

H.-G. Löhmannsröben, C. Kauffmann, Th. Roch, “Spectroscopic properties of petroleum products in solution for in-situ analysis of oil contaminations,” in Remote Sensing of Vegetation and Water, and Standardization of Remote Sensing Methods, G. Cecchi, T. Lamp, R. Reuter, K. Weber, eds., Proc. SPIE3107, 305–314 (1997).
[CrossRef]

H.-G. Löhmannsröben, Th. Roch, R. H. Schultze, “Laser-induced fluorescence (LIF) spectroscopy for in-situ analysis of petroleum products and biological oils,” Polycy. Aromat. Compounds (to be published).

Rutherford, B.

G. Bujewski, B. Rutherford, “The site characterization and analysis penetrometer system (SCAPS) laser-induced sensor and support system,” (Environmental Protection Agency, Washington, D.C., 1997); “The rapid optical screening tool (ROSTTM) laser-induced fluorescence (LIF) system for screening of petroleum hydrocarbons in subsurface soils,” (Environmental Protection Agency, Washington, D.C., 1997).

Schade, W.

W. Schade, J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Schultze, R. H.

H.-G. Löhmannsröben, Th. Roch, R. H. Schultze, “Laser-induced fluorescence (LIF) spectroscopy for in-situ analysis of petroleum products and biological oils,” Polycy. Aromat. Compounds (to be published).

Silva, L. F.

M. F. Baumgardner, L. F. Silva, L. L. Biehl, E. R. Stoner, “Reflectance properties of soils,” Adv. Agron. 38, 1–44 (1985).
[CrossRef]

Stoner, E. R.

M. F. Baumgardner, L. F. Silva, L. L. Biehl, E. R. Stoner, “Reflectance properties of soils,” Adv. Agron. 38, 1–44 (1985).
[CrossRef]

E. R. Stoner, M. F. Baumgardner, “Characteristic variations in reflectance of surface soils,” Soil Sci. Soc. Am. J. 45, 1161–1165 (1981).
[CrossRef]

Theriault, G. A.

S. H. Lieberman, G. A. Theriault, S. S. Cooper, P. G. Malone, R. S. Olsen, P. W. Lurk, “Rapid, subsurface, in situ field screening of petroleum hydrocarbon contamination using laser induced fluorescence over optical fibers,” in Proceedings of the Second International Symposium on Field Screening Methods of Hazardous Wastes and Toxic Chemicals (Air and Waste Management Association, Pittsburgh, Pa., 1991, pp. 57–63.

Valeriano, M. M.

M. M. Valeriano, J. C. N. Epiphanio, A. R. Formaggio, J. B. Oliveira, “Bi-directional reflectance factor of 14 soil classes from Brazil,” Int. J. Remote Sensing 16, 113–128 (1995).
[CrossRef]

Wu, X.

Adv. Agron.

M. F. Baumgardner, L. F. Silva, L. L. Biehl, E. R. Stoner, “Reflectance properties of soils,” Adv. Agron. 38, 1–44 (1985).
[CrossRef]

Anal. Taschenbuch

H.-G. Löhmannsröben, Th. Roch, “Laserfluoreszenzspektroskopie als extraktionsfreies Nachweisverfahren für PAK und Mineralöle in Bodenproben,” Anal. Taschenbuch 15, 217–253 (1996).
[CrossRef]

Appl. Spectrosc.

EARSeL Adv. Remote Sensing

T. Hengstermann, R. Reuter, “Laser remote sensing of pollution of the sea: A quantitative approach,” EARSeL Adv. Remote Sensing 1, 52–60 (1992).

Environ. Sci. Technol.

W. Schade, J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Field Anal. Chem. Technol.

S. J. Hart, Y.-M. Chen, J. E. Kenny, B. K. Lien, T. W. Best, “Field Demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle,” Field Anal. Chem. Technol. 1, 343–357 (1997).
[CrossRef]

S. H. Lieberman, “Direct-push, fluorescence-based sensor systems for in-situ measurement of petroleum hydrocarbons in soils,” Field Anal. Chem. Technol. 2, 63–73 (1998).
[CrossRef]

Int. J. Remote Sensing

M. M. Valeriano, J. C. N. Epiphanio, A. R. Formaggio, J. B. Oliveira, “Bi-directional reflectance factor of 14 soil classes from Brazil,” Int. J. Remote Sensing 16, 113–128 (1995).
[CrossRef]

J. Fluoresc.

M. U. Kumke, H.-G. Löhmannsröben, Th. Roch, “Fluorescence spectroscopy of polynuclear aromatic compounds in environmental monitoring,” J. Fluoresc. 5, 139–153 (1995).
[CrossRef] [PubMed]

Microchim. Acta

J. H. Aldstadt, A. F. Martin, “Analytical chemistry and the cone penetrometer: in situ chemical characterization of subsurface environments,” Microchim. Acta 127, 1–18 (1997).
[CrossRef]

Soil Sci.

S. A. Bowers, R. J. Hanks, “Reflection of radiant energy from soils,” Soil Sci. 100, 130–138 (1965).
[CrossRef]

Soil Sci. Soc. Am. J.

E. R. Stoner, M. F. Baumgardner, “Characteristic variations in reflectance of surface soils,” Soil Sci. Soc. Am. J. 45, 1161–1165 (1981).
[CrossRef]

Other

H.-G. Löhmannsröben, Th. Roch, R. H. Schultze, “Laser-induced fluorescence (LIF) spectroscopy for in-situ analysis of petroleum products and biological oils,” Polycy. Aromat. Compounds (to be published).

H.-G. Löhmannsröben, Th. Roch, “In-situ LIF analysis of polynuclear aromatic compounds (PAC) and mineral oils in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 128–134 (1996).
[CrossRef]

S. J. Hart, Y.-M. Chen, B. K. Lien, J. E. Kenny, “A fiber optic multichannel laser spectrometer system for remote fluorescence detection in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 73–82 (1996).
[CrossRef]

G. Bujewski, B. Rutherford, “The site characterization and analysis penetrometer system (SCAPS) laser-induced sensor and support system,” (Environmental Protection Agency, Washington, D.C., 1997); “The rapid optical screening tool (ROSTTM) laser-induced fluorescence (LIF) system for screening of petroleum hydrocarbons in subsurface soils,” (Environmental Protection Agency, Washington, D.C., 1997).

S. H. Lieberman, G. A. Theriault, S. S. Cooper, P. G. Malone, R. S. Olsen, P. W. Lurk, “Rapid, subsurface, in situ field screening of petroleum hydrocarbon contamination using laser induced fluorescence over optical fibers,” in Proceedings of the Second International Symposium on Field Screening Methods of Hazardous Wastes and Toxic Chemicals (Air and Waste Management Association, Pittsburgh, Pa., 1991, pp. 57–63.

D. S. Knowles, S. H. Lieberman, “Field results from the SCAPS laser-induced fluorescence (LIF) sensor for in-situ, subsurface detection of petroleum hydrocarbons,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 297–307 (1995).
[CrossRef]

H.-G. Löhmannsröben, C. Kauffmann, Th. Roch, “Spectroscopic properties of petroleum products in solution for in-situ analysis of oil contaminations,” in Remote Sensing of Vegetation and Water, and Standardization of Remote Sensing Methods, G. Cecchi, T. Lamp, R. Reuter, K. Weber, eds., Proc. SPIE3107, 305–314 (1997).
[CrossRef]

B. J. Nielsen, G. Gillispie, D. A. Bohne, D. R. Lindstrom, “A new site characterization and monitoring technology,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. Vo-Dinh, ed., Proc. SPIE2504, 278–291 (1995).
[CrossRef]

“Munsell soil color charts,” MacBeth Division of Kollmorgen Corp., Baltimore, Md. (1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

LIF spectra of soil S21 spiked with Diesel fuel. [Diesel-fuel concentrations are between 0 (uncontaminated soil) and 10,000 ppm. Excitation wavelength λex = 266 nm. The spectral feature in the range λem = 515–540 nm originates from scattered excitation light.]

Fig. 2
Fig. 2

LIF intensities of the Diesel fuel as functions of concentration in different soils and quartz sand. (Maximum fluorescence intensities near λem = 360 nm.)

Fig. 3
Fig. 3

DR spectra of various uncontaminated soils. (The spectral features at λ = 440–545 nm originate from the excitation lamp.)

Fig. 4
Fig. 4

Reflectance of various soils as functions of Diesel-fuel concentration. (The error bars indicate the standard deviations from three measurements with six positions each.)

Fig. 5
Fig. 5

Normalized LIF calibration functions of the Diesel-fuel-contaminated soils and quartz sand (error bars, see also Fig. 4, are omitted for clarity.) The inset schematically depicts the reduced influence of the variability of the matrices on the LIF calibration. [The shaded area encompasses the LIF calibration functions of the soils (see Fig. 2) and the quartz sand, whereas the normalized calibrations are enclosed in the white central part.]

Tables (1)

Tables Icon

Table 1 Properties of the Soils and the Quartz Sand Investigated

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

IFλem=const I0λex*λexηFλexfMc.
IFλem=mMc
IFλem=mMR c.

Metrics