Abstract

A method for simulating conventional time gating in low-coherence optical imaging processes in highly scattering media is given. The method uses monochromatic instead of broadband light, and spatial filtering is substituted for time gating. The process enables the study of imaging techniques in scattering media to be carried out in an easy and highly controllable way. Experimental results are given.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, James G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996).
  2. E. Leith, P. Naulleau, D. Dilworth, “Ensemble-averaged imaging through highly scattering media,” Opt. Lett. 21, 1691–1693 (1996).
    [CrossRef] [PubMed]
  3. A. Cunha, M. Friedman, E. Leith, J. Lopez, E. Reid, K. Silverman, “Tandem coherent–incoherent filtering in scanning optical microscopy,” Appl. Opt. 28, 2993–2995 (1989).
    [CrossRef] [PubMed]
  4. G. E. Anderson, F. Liu, R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19, 981–983 (1994).
    [CrossRef] [PubMed]
  5. J. M. Schmitt, A. Knuettel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
    [CrossRef]
  6. M. Kempke, W. Rudolph, E. Welsch, “Comparative study of a confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).
    [CrossRef]
  7. M. Gu, T. Tannous, J. R. Sheppard, “Effect of an annular pupil on confocal imaging through highly scattering media,” Opt. Lett. 21, 312–314 (1996).
    [CrossRef] [PubMed]
  8. E. Leith, J. Upatnieks, “Holograms: their properties and uses,” SPIE J. 4, 3–6 (1965).
  9. H. Kogelnik, “Holographic image projection through inhomogeneous media,” Bell Syst. Tech. J. 44, 2451–2452 (1965).
    [CrossRef]
  10. J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
    [CrossRef]
  11. A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

1996 (3)

1994 (2)

1989 (1)

1970 (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

1966 (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

1965 (2)

E. Leith, J. Upatnieks, “Holograms: their properties and uses,” SPIE J. 4, 3–6 (1965).

H. Kogelnik, “Holographic image projection through inhomogeneous media,” Bell Syst. Tech. J. 44, 2451–2452 (1965).
[CrossRef]

Alfano, R. R.

Anderson, G. E.

Cunha, A.

Dilworth, D.

Friedman, M.

Goodman, J. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Gu, M.

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Jackson, D. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Kempke, M.

Knuettel, A.

Kogelnik, H.

H. Kogelnik, “Holographic image projection through inhomogeneous media,” Bell Syst. Tech. J. 44, 2451–2452 (1965).
[CrossRef]

Labeyrie, A.

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Lehmann, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Leith, E.

Liu, F.

Lopez, J.

Naulleau, P.

Reid, E.

Rudolph, W.

Schmitt, J. M.

Sheppard, J. R.

Silverman, K.

Tannous, T.

Upatnieks, J.

E. Leith, J. Upatnieks, “Holograms: their properties and uses,” SPIE J. 4, 3–6 (1965).

Welsch, E.

Yadlowsky, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Astron. Astrophys. (1)

A. Labeyrie, “Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images,” Astron. Astrophys. 6, 85–87 (1970).

Bell Syst. Tech. J. (1)

H. Kogelnik, “Holographic image projection through inhomogeneous media,” Bell Syst. Tech. J. 44, 2451–2452 (1965).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (3)

SPIE J. (1)

E. Leith, J. Upatnieks, “Holograms: their properties and uses,” SPIE J. 4, 3–6 (1965).

Other (1)

R. R. Alfano, James G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Propagation of a short pulse of light through a scattering medium.

Fig. 2
Fig. 2

(a) Three diffusing plates in tandem and (b) the same plates, with spatial-filtering systems between them.

Fig. 3
Fig. 3

(a) Ray path between two diffusing plates and (b) various ray paths between three diffusing plates.

Fig. 4
Fig. 4

Diagram for analyzing the gate-delay transfer function. (a) The outer circle represents the cutoff and (b) the circle represents a delay time between the peak and the cutoff.

Fig. 5
Fig. 5

Two gate-delay transfer function curves.

Fig. 6
Fig. 6

Resolution chart imaged through different time gates. The gate widths are (a) 10 fs, (b) 20 fs, (c) 40 fs, (d) 70 fs.

Fig. 7
Fig. 7

Resolution as a function of gate width for extremely short gates.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

L=cτ=d/2θ12+θ22=1/2dx12+x2-x12
2cτ/λ2d=f12+f22.
f12+f22=2cτ1/λ2d=fc2.
θc=cos-1fc/r=cos-1τ1τ1/2,
τ=1/2cdx12+y12+x2-x12+y2-y12,
τ1=λ2d/2cf1x2+f1y2+f2x2+f2y2=λ2d/2cf1r2+f2r2,
fcr2=2cτ1/λ2d=f1r2+f2r2.
Tτ=1for 0ττ1cos2 cos-1τ1τ1/2for τ1τ2τ10for τ12τ1,
τ1=x/F2d/2c,
τ1=0.7022x2,

Metrics