Abstract

Hologram formation and diffusion reactions in photopolymer films are examined at different stages of exposure and at different spatial frequencies. Different properties of the grating formation process are evaluated from efficiency data, including the relative rates of diffusion and photoinitiated polymerization, dye absorption, and residual efficiency enhancement after UV curing. It was also found that gratings with larger periods (∼1.4 µm) are susceptible to erasure effects with postexposure laser illumination. In addition, crossed gratings were found to have an extended dynamic range. This effect can have a significant impact on the number of holograms formed with rotational or peristrophic multiplexing.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
    [CrossRef]
  2. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1993).
    [CrossRef]
  3. S. A. Zager, A. M. Weber, “Display holograms in DuPont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 58–67 (1991).
  4. K. Curtis, D. Psaltis, “Characterization of the DuPont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
    [CrossRef] [PubMed]
  5. K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
    [CrossRef] [PubMed]
  6. A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
    [CrossRef]
  7. D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997).
    [CrossRef]
  8. D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Tech. 41, 497–514 (1997).
  9. C. Carre, D. J. Lougnot, “Photopolymers for holographic recording: from standard to self-processing materials,” J. Phys. (Paris) III, 3, 1445–1460 (1993).
  10. J.-P. Fouassier, F. Morlet-Savary, “Photopolymers for laser imaging and holographic recording: design and reactivity of photosensitizers,” Opt. Eng. 35, 304–312 (1996).
    [CrossRef]
  11. D. J. Lougnot, C. Turk, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
    [CrossRef]
  12. D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
    [CrossRef]
  13. D. J. Lougnot, N. Noiret, C. Turck, “Photopolymers for holographic recording: IV. New self-processing formulations based on B-hydroxy ethyloxazolidone acrylate,” Pure Appl. Opt. 2, 383–392 (1993).
    [CrossRef]
  14. Y. Defosse, C. Carre, D. J. Lougnot, “Use of a self-developing polymer material for volume reflection hologram recording,” Pure Appl. Opt. 2, 437–440 (1993).
    [CrossRef]
  15. N. Noiret, C. Meyer, D. J. Lougnot, “Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity,” Pure Appl. Opt. 3, 55–71 (1994).
    [CrossRef]
  16. W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [CrossRef] [PubMed]
  17. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975).
    [CrossRef] [PubMed]
  18. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
    [CrossRef] [PubMed]
  19. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
    [CrossRef]
  20. U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
    [CrossRef] [PubMed]
  21. G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  22. V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
    [CrossRef]
  23. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  24. A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer materials,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
    [CrossRef]
  25. J. J. Couture, R. A. Lessard, “Effective thickness determination for volume transmission multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
    [CrossRef]

1997

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Tech. 41, 497–514 (1997).

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

1996

A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

J.-P. Fouassier, F. Morlet-Savary, “Photopolymers for laser imaging and holographic recording: design and reactivity of photosensitizers,” Opt. Eng. 35, 304–312 (1996).
[CrossRef]

1995

1994

N. Noiret, C. Meyer, D. J. Lougnot, “Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity,” Pure Appl. Opt. 3, 55–71 (1994).
[CrossRef]

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
[CrossRef] [PubMed]

K. Curtis, D. Psaltis, “Characterization of the DuPont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
[CrossRef] [PubMed]

1993

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

D. J. Lougnot, N. Noiret, C. Turck, “Photopolymers for holographic recording: IV. New self-processing formulations based on B-hydroxy ethyloxazolidone acrylate,” Pure Appl. Opt. 2, 383–392 (1993).
[CrossRef]

Y. Defosse, C. Carre, D. J. Lougnot, “Use of a self-developing polymer material for volume reflection hologram recording,” Pure Appl. Opt. 2, 437–440 (1993).
[CrossRef]

C. Carre, D. J. Lougnot, “Photopolymers for holographic recording: from standard to self-processing materials,” J. Phys. (Paris) III, 3, 1445–1460 (1993).

1992

D. J. Lougnot, C. Turk, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
[CrossRef] [PubMed]

1986

J. J. Couture, R. A. Lessard, “Effective thickness determination for volume transmission multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

1975

1971

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Booth, B. L.

Carre, C.

Y. Defosse, C. Carre, D. J. Lougnot, “Use of a self-developing polymer material for volume reflection hologram recording,” Pure Appl. Opt. 2, 437–440 (1993).
[CrossRef]

C. Carre, D. J. Lougnot, “Photopolymers for holographic recording: from standard to self-processing materials,” J. Phys. (Paris) III, 3, 1445–1460 (1993).

Caulfield, H. J.

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Colburn, W. S.

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Couture, J. J.

J. J. Couture, R. A. Lessard, “Effective thickness determination for volume transmission multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

Curtis, K.

Defosse, Y.

Y. Defosse, C. Carre, D. J. Lougnot, “Use of a self-developing polymer material for volume reflection hologram recording,” Pure Appl. Opt. 2, 437–440 (1993).
[CrossRef]

Fouassier, J.-P.

J.-P. Fouassier, F. Morlet-Savary, “Photopolymers for laser imaging and holographic recording: design and reactivity of photosensitizers,” Opt. Eng. 35, 304–312 (1996).
[CrossRef]

Gambogi, W. J.

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1993).
[CrossRef]

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

Gerstadt, W. A.

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

Haines, K. A.

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Horner, M. G.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Tech. 41, 497–514 (1997).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Lessard, R. A.

J. J. Couture, R. A. Lessard, “Effective thickness determination for volume transmission multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Tech. 41, 497–514 (1997).

D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997).
[CrossRef]

Lougnot, D. J.

N. Noiret, C. Meyer, D. J. Lougnot, “Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity,” Pure Appl. Opt. 3, 55–71 (1994).
[CrossRef]

C. Carre, D. J. Lougnot, “Photopolymers for holographic recording: from standard to self-processing materials,” J. Phys. (Paris) III, 3, 1445–1460 (1993).

Y. Defosse, C. Carre, D. J. Lougnot, “Use of a self-developing polymer material for volume reflection hologram recording,” Pure Appl. Opt. 2, 437–440 (1993).
[CrossRef]

D. J. Lougnot, N. Noiret, C. Turck, “Photopolymers for holographic recording: IV. New self-processing formulations based on B-hydroxy ethyloxazolidone acrylate,” Pure Appl. Opt. 2, 383–392 (1993).
[CrossRef]

D. J. Lougnot, C. Turk, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

Mackara, S. R.

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

Meyer, C.

N. Noiret, C. Meyer, D. J. Lougnot, “Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity,” Pure Appl. Opt. 3, 55–71 (1994).
[CrossRef]

Mickish, D. J.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer materials,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

Mirsalehi, M. M.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Morlet-Savary, F.

J.-P. Fouassier, F. Morlet-Savary, “Photopolymers for laser imaging and holographic recording: design and reactivity of photosensitizers,” Opt. Eng. 35, 304–312 (1996).
[CrossRef]

Mouroulis, P.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Noiret, N.

N. Noiret, C. Meyer, D. J. Lougnot, “Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity,” Pure Appl. Opt. 3, 55–71 (1994).
[CrossRef]

D. J. Lougnot, N. Noiret, C. Turck, “Photopolymers for holographic recording: IV. New self-processing formulations based on B-hydroxy ethyloxazolidone acrylate,” Pure Appl. Opt. 2, 383–392 (1993).
[CrossRef]

Psaltis, D.

Pu, A.

A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
[CrossRef] [PubMed]

Rhee, U.-S.

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Shamir, J.

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Smothers, W. K.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer materials,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

Trout, T. J.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer materials,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1993).
[CrossRef]

Turck, C.

D. J. Lougnot, N. Noiret, C. Turck, “Photopolymers for holographic recording: IV. New self-processing formulations based on B-hydroxy ethyloxazolidone acrylate,” Pure Appl. Opt. 2, 383–392 (1993).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

Turk, C.

D. J. Lougnot, C. Turk, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
[CrossRef]

Vikram, C. S.

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Tech. 41, 497–514 (1997).

D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997).
[CrossRef]

Weber, A. M.

S. A. Zager, A. M. Weber, “Display holograms in DuPont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 58–67 (1991).

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1993).
[CrossRef]

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer materials,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

Zager, S. A.

S. A. Zager, A. M. Weber, “Display holograms in DuPont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 58–67 (1991).

Zhao, G.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Can. J. Phys.

J. J. Couture, R. A. Lessard, “Effective thickness determination for volume transmission multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

J. Appl. Phys.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

J. Imaging Sci. Tech.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Tech. 41, 497–514 (1997).

J. Mod. Opt.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

J. Phys. (Paris) III

C. Carre, D. J. Lougnot, “Photopolymers for holographic recording: from standard to self-processing materials,” J. Phys. (Paris) III, 3, 1445–1460 (1993).

Opt. Eng.

J.-P. Fouassier, F. Morlet-Savary, “Photopolymers for laser imaging and holographic recording: design and reactivity of photosensitizers,” Opt. Eng. 35, 304–312 (1996).
[CrossRef]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

Opt. Lett.

Pure Appl. Opt.

D. J. Lougnot, C. Turk, “Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry,” Pure Appl. Opt. 1, 251–268 (1992).
[CrossRef]

D. J. Lougnot, C. Turck, “Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect,” Pure Appl. Opt. 1, 269–279 (1992).
[CrossRef]

D. J. Lougnot, N. Noiret, C. Turck, “Photopolymers for holographic recording: IV. New self-processing formulations based on B-hydroxy ethyloxazolidone acrylate,” Pure Appl. Opt. 2, 383–392 (1993).
[CrossRef]

Y. Defosse, C. Carre, D. J. Lougnot, “Use of a self-developing polymer material for volume reflection hologram recording,” Pure Appl. Opt. 2, 437–440 (1993).
[CrossRef]

N. Noiret, C. Meyer, D. J. Lougnot, “Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity,” Pure Appl. Opt. 3, 55–71 (1994).
[CrossRef]

Other

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1993).
[CrossRef]

S. A. Zager, A. M. Weber, “Display holograms in DuPont’s OmniDex films,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 58–67 (1991).

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in DuPont’s new photopolymer materials,” in Practical Holography IV, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the hologram recording configuration and dynamic monitoring setup with a He–Ne probe beam.

Fig. 2
Fig. 2

Normalized diffraction efficiency versus exposure time for HRF-150 100-µm-thick photopolymer with three different exposing irradiance levels recorded at 488 nm with a grating period of 0.345 µm. DE, diffraction efficiency; ♦, exposure of 5 mW cm-2; ■, exposure of 10.3 mW cm-2; ▲, exposure of 15 mW cm-2.

Fig. 3
Fig. 3

Normalized diffraction efficiency versus exposure time for HRF-150 100-µm-thick photopolymer with three different exposing irradiance levels recorded at 488 nm with a grating period of 1.405 µm. ♦, diffraction efficiency of 5 mW cm-2; ■, diffraction efficiency of 10 mW cm-2; ▲, diffraction efficiency of 15 mW cm-2.

Fig. 4
Fig. 4

Diffraction efficiency versus reconstruction angle for a 0.345-µm period grating recorded in HRF-150 100-µm-thick photopolymer. Exposure irradiance was 19.3 mW cm-2 at 488 nm. *, experimental data; solid curve, calculated efficiency based on two-wave coupled-wave theory with a thickness of 100 µm.

Fig. 5
Fig. 5

Diffraction efficiency versus reconstruction angle for a 1.405-µm period grating recorded in HRF-150 100-µm-thick photopolymer. Exposure irradiance was 16.6 mW cm-2 at 488 nm. *, experimental data; solid curve, calculated efficiency based on two-wave coupled-wave theory with a thickness of 100 µm.

Fig. 6
Fig. 6

(a) Precured and postcured diffraction efficiency versus exposure energy per centimeter squared for an unslanted transmission grating recorded in HRF-150 100-µm-thick photopolymer with a period of 0.345 µm and an exposing irradiance of 10 mW cm-2. (b) Precured and postcured diffraction efficiency versus exposure energy per centimeter squared for an unslanted transmission grating recorded in HRF-150 100-µm-thick photopolymer with a period of 1.448 µm and an exposing irradiance of 10 mW cm-2. (c) Postcured diffraction efficiencies versus exposure energy per centimeter squared for unslanted transmission gratings with 0.345- and 1.186-µm period gratings recorded in HRF-150 38-µm photopolymer. Also shown is the precured efficiency for the 0.345-µm grating.

Fig. 7
Fig. 7

Dynamically monitored normalized diffraction efficiency versus exposure time for unslanted transmission gratings recorded in HRF-150 100-µm-thick photopolymer with an exposing irradiance of 5 mW cm-2 and a period of 0.345 µm. Curves: ♦, exposed to saturation; ■, efficiency response with the exposure stopped when the diffraction efficiency reached ∼20%; ▲, efficiency response with the exposure stopped when the diffraction efficiency reached ∼60%.

Fig. 8
Fig. 8

Dynamically monitored normalized diffraction efficiency versus exposure time for unslanted transmission gratings recorded in HRF-150 100-µm-thick photopolymer with an exposing irradiance of 5 mW cm-2 and a period of 1.405 µm. Curves: ♦, exposed to saturation; ■, efficiency response with the exposure stopped when the diffraction efficiency reached ∼20%; ▲, efficiency response with the exposure stopped when the diffraction efficiency reached ∼60%.

Fig. 9
Fig. 9

Dynamically monitored normalized diffraction efficiency with postholographic exposure illumination for unslanted transmission gratings recorded in HRF-150 100-µm-thick photopolymer film with a grating period of 0.345 µm. Curves: ♦, exposed to saturation; ■, efficiency response with the exposure stopped when the diffraction efficiency reached ∼30% and then illuminated with one of the writing beams; ▲, efficiency response with the exposure stopped when the diffraction efficiency reached ∼60% and then illuminated with one of the writing beams; , efficiency response after exposure to ∼60% and illumination with an incoherent beam.

Fig. 10
Fig. 10

Dynamically monitored normalized diffraction efficiency with postholographic exposure illumination for unslanted transmission gratings recorded in HRF-150 100-µm-thick photopolymer film with a grating period of 1.405 µm. Curves: ♦, exposed to saturation; ■, efficiency response with the exposure stopped when the diffraction efficiency reached ∼40% and then illuminated with one of the writing beams; ▲, efficiency response with the exposure stopped when the diffraction efficiency reached ∼60% and then illuminated with one of the writing beams; , efficiency response after exposure to ∼40% and illumination with an incoherent beam.

Fig. 11
Fig. 11

Normalized diffraction efficiency versus exposure time for unslanted transmission gratings with a period of 0.345 µm and an exposing irradiance of 10 mW cm-2. Curves: ♦, first exposure recorded; ■, recorded in the same region as the first but with the film rotated by 90°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ux, tt=xDx, tux, tx-Fox, t×1+V cosKxux, t,
Δn=λ cosθsin-1η/πd,
η=IdifIinc-Irefl,

Metrics