Abstract

Foveal fixation was monitored in normal subjects remotely and continuously by use of a noninvasive retinal scan. Polarized infrared light was imaged onto the retina and scanned in a 3° annulus at 44 Hz. Reflections were analyzed by differential polarization detection. In all 32 eyes studied, the detected signal was predominantly 88 Hz during central fixation (within ±1°) and 44 Hz during paracentral fixation. Phase shift at 44 Hz correlated with the direction of eye displacement. Potential applications of this technique include screening for eye disease, eye position monitoring during clinical procedures, and use of eye fixation to operate devices.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Young, D. Sheena, “Survey of eye movement recording methods,” Behav. Res. Methods Instrum. 7, 397–429 (1975).
    [CrossRef]
  2. H. Collewijn, F. van der Mark, T. C. Nansen, “Precise recording of human eye movements,” Vision Res. 15, 447–450 (1975).
    [CrossRef] [PubMed]
  3. T. N. Cornsweet, H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am. 63, 921–918 (1973).
    [CrossRef] [PubMed]
  4. J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
    [CrossRef]
  5. D. P. Wornson, G. W. Hughes, R. H. Webb, “Fundus tracking with the scanning laser ophthalmoscope,” Appl. Opt. 26, 1500–1504 (1987).
    [CrossRef] [PubMed]
  6. H. B. klein Brink, G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Müeller-matrix ellipsometry,” J. Opt. Soc. Am. A 5, 49–57 (1988).
    [CrossRef]
  7. A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
    [CrossRef] [PubMed]
  8. R. N. Weinreb, S. Shakiba, L. Zangwill, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 626–636 (1995).
  9. D. L. Guyton, D. G. Hunter, J. M. Masters, S. N. Patel, B. Fry, “Eye fixation monitor and tracker,” (U.S. patent application, 21October1997).
  10. D. Sliney, M. Wolbarsht, “Current laser exposure limits,” in Safety with Lasers and Other Optical Sources (Plenum, New York, 1980), pp. 261–283.
    [CrossRef]
  11. D. L. Guyton, J. Allen, K. Simons, K. D. Scattergood, “Remote optical systems for ophthalmic examination and vision research,” Appl. Opt. 26, 1517–1526 (1987).
    [CrossRef] [PubMed]
  12. G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, “Differential optical polarization detectors,” U.S. patent3,992,571 (16November1976).
  13. G. J. van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
    [CrossRef] [PubMed]
  14. F. Vrabec, “The temporal raphe of the human retina,” Am. J. Ophthalmol. 62, 926–938 (1966).
    [PubMed]
  15. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
    [CrossRef] [PubMed]
  16. E. Dodt, M. Kuba, “Visually evoked potentials in response to rotating plane-polarized blue light,” Ophthal. Res. 22, 391–394 (1990).
    [CrossRef]
  17. B. F. Hochheimer, H. A. Kues, “Retinal polarization effects,” Appl. Opt. 21, 3811–3818 (1982).
    [CrossRef] [PubMed]
  18. D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton are preparing the following paper for publication: “Mathematical modeling of retinal birefringence scanning.”

1995 (1)

R. N. Weinreb, S. Shakiba, L. Zangwill, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 626–636 (1995).

1992 (1)

1990 (2)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

E. Dodt, M. Kuba, “Visually evoked potentials in response to rotating plane-polarized blue light,” Ophthal. Res. 22, 391–394 (1990).
[CrossRef]

1988 (2)

H. B. klein Brink, G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Müeller-matrix ellipsometry,” J. Opt. Soc. Am. A 5, 49–57 (1988).
[CrossRef]

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

1987 (3)

1982 (1)

1975 (2)

L. R. Young, D. Sheena, “Survey of eye movement recording methods,” Behav. Res. Methods Instrum. 7, 397–429 (1975).
[CrossRef]

H. Collewijn, F. van der Mark, T. C. Nansen, “Precise recording of human eye movements,” Vision Res. 15, 447–450 (1975).
[CrossRef] [PubMed]

1973 (1)

1966 (1)

F. Vrabec, “The temporal raphe of the human retina,” Am. J. Ophthalmol. 62, 926–938 (1966).
[PubMed]

Allen, J.

Bos, J. E.

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

Boshuizen, K.

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

Coleman, A.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Collewijn, H.

H. Collewijn, F. van der Mark, T. C. Nansen, “Precise recording of human eye movements,” Vision Res. 15, 447–450 (1975).
[CrossRef] [PubMed]

Cornsweet, T. N.

Crane, H. D.

deVries, F. R.

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

Dodt, E.

E. Dodt, M. Kuba, “Visually evoked potentials in response to rotating plane-polarized blue light,” Ophthal. Res. 22, 391–394 (1990).
[CrossRef]

Dreher, A. W.

A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
[CrossRef] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Fry, B.

D. L. Guyton, D. G. Hunter, J. M. Masters, S. N. Patel, B. Fry, “Eye fixation monitor and tracker,” (U.S. patent application, 21October1997).

Garlick, G. F. J.

G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, “Differential optical polarization detectors,” U.S. patent3,992,571 (16November1976).

Guyton, D. L.

D. L. Guyton, J. Allen, K. Simons, K. D. Scattergood, “Remote optical systems for ophthalmic examination and vision research,” Appl. Opt. 26, 1517–1526 (1987).
[CrossRef] [PubMed]

D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton are preparing the following paper for publication: “Mathematical modeling of retinal birefringence scanning.”

D. L. Guyton, D. G. Hunter, J. M. Masters, S. N. Patel, B. Fry, “Eye fixation monitor and tracker,” (U.S. patent application, 21October1997).

Hochheimer, B. F.

Hughes, G. W.

Hunter, D. G.

D. L. Guyton, D. G. Hunter, J. M. Masters, S. N. Patel, B. Fry, “Eye fixation monitor and tracker,” (U.S. patent application, 21October1997).

D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton are preparing the following paper for publication: “Mathematical modeling of retinal birefringence scanning.”

klein Brink, H. B.

Koops, D.

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

Kuba, M.

E. Dodt, M. Kuba, “Visually evoked potentials in response to rotating plane-polarized blue light,” Ophthal. Res. 22, 391–394 (1990).
[CrossRef]

Kues, H. A.

Lamb, W. E.

G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, “Differential optical polarization detectors,” U.S. patent3,992,571 (16November1976).

Marcus, J. T.

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

Masters, J. M.

D. L. Guyton, D. G. Hunter, J. M. Masters, S. N. Patel, B. Fry, “Eye fixation monitor and tracker,” (U.S. patent application, 21October1997).

Nansen, T. C.

H. Collewijn, F. van der Mark, T. C. Nansen, “Precise recording of human eye movements,” Vision Res. 15, 447–450 (1975).
[CrossRef] [PubMed]

Patel, S. N.

D. L. Guyton, D. G. Hunter, J. M. Masters, S. N. Patel, B. Fry, “Eye fixation monitor and tracker,” (U.S. patent application, 21October1997).

D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton are preparing the following paper for publication: “Mathematical modeling of retinal birefringence scanning.”

Quigley, H.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Reiter, K.

A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
[CrossRef] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Reulen, J. P. H.

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

Sandruck, J. C.

D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton are preparing the following paper for publication: “Mathematical modeling of retinal birefringence scanning.”

Sau, S.

D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton are preparing the following paper for publication: “Mathematical modeling of retinal birefringence scanning.”

Scattergood, K. D.

Shakiba, S.

R. N. Weinreb, S. Shakiba, L. Zangwill, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 626–636 (1995).

Shaw, B.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Sheena, D.

L. R. Young, D. Sheena, “Survey of eye movement recording methods,” Behav. Res. Methods Instrum. 7, 397–429 (1975).
[CrossRef]

Simons, K.

Sliney, D.

D. Sliney, M. Wolbarsht, “Current laser exposure limits,” in Safety with Lasers and Other Optical Sources (Plenum, New York, 1980), pp. 261–283.
[CrossRef]

Steigmann, G. A.

G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, “Differential optical polarization detectors,” U.S. patent3,992,571 (16November1976).

Tiesinga, G.

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

van Blokland, G. J.

van der Mark, F.

H. Collewijn, F. van der Mark, T. C. Nansen, “Precise recording of human eye movements,” Vision Res. 15, 447–450 (1975).
[CrossRef] [PubMed]

Verhelst, S. C.

Vrabec, F.

F. Vrabec, “The temporal raphe of the human retina,” Am. J. Ophthalmol. 62, 926–938 (1966).
[PubMed]

Webb, R. H.

Weinreb, R. N.

R. N. Weinreb, S. Shakiba, L. Zangwill, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 626–636 (1995).

A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31, 3730–3735 (1992).
[CrossRef] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Wolbarsht, M.

D. Sliney, M. Wolbarsht, “Current laser exposure limits,” in Safety with Lasers and Other Optical Sources (Plenum, New York, 1980), pp. 261–283.
[CrossRef]

Wornson, D. P.

Young, L. R.

L. R. Young, D. Sheena, “Survey of eye movement recording methods,” Behav. Res. Methods Instrum. 7, 397–429 (1975).
[CrossRef]

Zangwill, L.

R. N. Weinreb, S. Shakiba, L. Zangwill, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 626–636 (1995).

Am. J. Ophthalmol. (2)

R. N. Weinreb, S. Shakiba, L. Zangwill, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 626–636 (1995).

F. Vrabec, “The temporal raphe of the human retina,” Am. J. Ophthalmol. 62, 926–938 (1966).
[PubMed]

Appl. Opt. (4)

Arch. Ophthalmol. (1)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108, 557–560 (1990).
[CrossRef] [PubMed]

Behav. Res. Methods Instrum. (1)

L. R. Young, D. Sheena, “Survey of eye movement recording methods,” Behav. Res. Methods Instrum. 7, 397–429 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Med. Biol. Eng. Comp. (1)

J. P. H. Reulen, J. T. Marcus, D. Koops, F. R. deVries, G. Tiesinga, K. Boshuizen, J. E. Bos, “Precise recording of eye movement: the IRIS technique. 1,” Med. Biol. Eng. Comp. 26, 20–26 (1988).
[CrossRef]

Ophthal. Res. (1)

E. Dodt, M. Kuba, “Visually evoked potentials in response to rotating plane-polarized blue light,” Ophthal. Res. 22, 391–394 (1990).
[CrossRef]

Vision Res. (1)

H. Collewijn, F. van der Mark, T. C. Nansen, “Precise recording of human eye movements,” Vision Res. 15, 447–450 (1975).
[CrossRef] [PubMed]

Other (4)

D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton are preparing the following paper for publication: “Mathematical modeling of retinal birefringence scanning.”

D. L. Guyton, D. G. Hunter, J. M. Masters, S. N. Patel, B. Fry, “Eye fixation monitor and tracker,” (U.S. patent application, 21October1997).

D. Sliney, M. Wolbarsht, “Current laser exposure limits,” in Safety with Lasers and Other Optical Sources (Plenum, New York, 1980), pp. 261–283.
[CrossRef]

G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, “Differential optical polarization detectors,” U.S. patent3,992,571 (16November1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of retinal birefringence scanner. The large concave mirror is located 1.5 m from the subject. Dotted lines indicate change in light path as the mirror rotates. Solid, straight arrows indicate the direction of light travel.

Fig. 2
Fig. 2

RBS data obtained from a normal subject. Output of the differential polarization analyzer was sampled for 0.5 s and digitized. Power spectrum analysis was performed and displayed at the time of data collection. (a), (b) differential signal in the time domain; (c), (d) signal power in the frequency domain (unit of power, V2 rms × 10-6). (a), and (c) central fixation; (b), (d) paracentral fixation.

Fig. 3
Fig. 3

Detection of foveal fixation. Comparison of P 0 [100 × P 2/(P 1 + P 2)], percentage of power at f 2 (88 Hz) during central and paracentral fixation. Error bars indicate ±1 standard deviation.

Fig. 4
Fig. 4

Precision of the central fixation detector; 3° retinal illumination circle. At 1° of displacement, P 2 (power at 88 Hz) drops below P 1 (power at 44 Hz), indicating paracentral fixation. A small increase in the 88-Hz component was observed 4° temporally and 3° nasally in both eyes; however, P 0 remained below 50%.

Fig. 5
Fig. 5

Representative polar plot of the phase shift of a differential polarization signal obtained during 1.5° of paracentral fixation in various directions of gaze. Each point represents a separate measurement. Data are plotted with standard polar coordinates (0–360° of phase shift). The distance from the center corresponds to displacement of fixation from the central target. The subject was gazing paracentrally in the direction indicated. Unlabeled clusters represent five data points obtained during gaze in intermediate directions. Open circles, gaze up; filled triangles, gaze up and left; open diamonds gaze left; filled circles, gaze down and left; open squares, gaze down; filled diamonds, gaze down and right; open triangles, gaze right; filled squares, gaze up and right.

Fig. 6
Fig. 6

Schematic drawing of the retinal nerve fiber axon arrangement about the fovea. Examiner’s view, right eye. The center of the foveola (✳), which is nearly devoid of nerve fibers, includes the central 0.35 mm of the fovea (1.2° of the visual field), located 4 mm temporal and 0.8 mm inferior to the center of the optic disk.

Fig. 7
Fig. 7

Hypothesized origin of observed RBS signals. (a) Location of the RBS annulus during central fixation. A schematic of the fovea representing the central 6°–8° of the visual field is shown. Henle fibers are radially symmetric about the foveola. The darkened bow-tie pattern represents the Haidinger brush pattern observed in the foveal photographs taken through crossed polarizers.13 The circular arrow represents the foveal area traversed by polarized laser light. (b) Schematic of RBS output during central fixation. Numbers 1–4 correspond to retinal areas scanned in (a). (c) Location of the RBS annulus during paracentral fixation. (d) Schematic of RBS output during paracentral fixation.

Tables (1)

Tables Icon

Table 1 Average RBS Power Levelsa

Metrics