Abstract

High-resolution double-modulation Fourier-transform (FT) spectroscopy (FTS) is demonstrated for what is, to our knowledge, the first time. Two high-resolution FT interferograms are simultaneously recorded. The first one is nonselective and contains all the spectral information from the observed source, and the other one is made of the samples that are sensitive to only a specific source modulation. General formulations and practical recording procedures are given for phase- and intensity-modulated spectra. The advantage of selectivity is illustrated by velocity-modulated emission spectra of the Δv = 1 sequence of the Doppler-shifted ArH+ ion. It is also shown that for a source perturbation of small amplitude, only the product of intensity × shift can be retrieved from the selective line shapes obtained in a phase-modulated laser or FT spectra. Thanks to the multimodulation FTS approach, the intensity and the shift of the transitions are measured in a single experiment.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrosc. Acta A 51, 1117–1125 (1995).
    [CrossRef]
  2. A. Benidar, G. Guelachvili, P. A. Martin, “Selective detection of OH radical in emission by concentration-modulation infrared FTS,” Chem. Phys. Lett. 177, 563–567 (1991).
    [CrossRef]
  3. M. Elhanine, R. Farrenq, G. Guelachvili, “Polarization modulation high resolution Fourier transform spectroscopy,” Appl. Opt. 28, 4024–4029 (1989).
    [CrossRef] [PubMed]
  4. G. Guelachvili, “Selective detection of paramagnetic species by high-information Fourier-transform spectrometry,” J. Opt. Soc. Am. B 3, 1718–1721 (1986).
    [CrossRef]
  5. L. A. Nafie, D. W. Vidrine, “Double modulation Fourier transform spectroscopy,” in Fourier Transform Infrared Spectroscopy, J. R. Ferraro, L. J. Basile, eds. (Academic, New York, 1982), Vol. 3, pp. 83–123.
  6. C. J. Manning, P. R. Griffiths, “Multiple-modulation double-Fourier transform IR spectrometry,” in Ninth International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 248–249 (1993).
    [CrossRef]
  7. F. Long, T. B. Freedman, T. J. Tague, L. A. Nafie, “Step-scan Fourier transform vibrational circular dichroism measurements in the vibrational region above 2000 cm-1,” Appl. Spectrosc. 51, 504–507 (1997).
    [CrossRef]
  8. C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).
    [CrossRef]
  9. P. A. Martin, G. Guelachvili, “Velocity-modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).
    [CrossRef] [PubMed]
  10. X. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).
    [CrossRef]
  11. X. Hong, T. A. Miller, “Observation of characteristic, polarity-dependent, Doppler shifts from neutral species in the positive column of a discharge plasma,” J. Chem. Phys. 103, 8821–8827 (1995).
    [CrossRef]
  12. X. Hong, T. A. Miller, “An investigation of the mechanisms of production of Ar+ emission using Doppler shifted Fourier transform spectroscopy,” Chem. Phys. Lett. 233, 298–302 (1995).
    [CrossRef]
  13. M. Tasumi, H. Toriumi, W. G. Fateley, eds., “Contributions from the International Symposium on Advanced Infrared Spectroscopy (AIRS),” Appl. Spectrosc. 47, (1993).
  14. J. A. de Haseth, ed., Fourier Transform Spectroscopy, Eleventh International Conference, AIP Conf. Proc.430, (1998).
  15. D. L. Drapcho, R. Curbelo, E. Y. Jiang, R. A. Crocombe, W. J. McCarthy, “Digital signal processing for step-scan Fourier transform infrared photoacoustic spectroscopy,” Appl. Spectrosc. 51, 453–460 (1997).
    [CrossRef]
  16. S. Civis̆, “Infrared diode laser study of ArH+ and ArD+ ions in the positive column of an ac glow discharge,” Chem. Phys. 186, 63–76 (1994).
    [CrossRef]
  17. N. Picqué, G. Guelachvili, “ArH+ near 5 µm with high resolution double demodulation FTS,” Vibrat. Spectrosc. (to be published).
  18. N. Picqué, S. Civis̆, P. A. Martin, G. Guelachvili, “Rovibrational intensities for the Δv = 1 bands of 1Σ+ ArH+,” submitted to J. Mol. Spectrosc.
  19. N. Picqué, “Spectroscopic investigation of the state-to-state dependence of ArH+ ion mobility in a He plasma,” submitted to Phys. Rev. Lett.
  20. J. W. Farley, “Theory of the resonance line shape in velocity-modulation spectroscopy,” J. Chem. Phys. 95, 5590–5602 (1991).
    [CrossRef]
  21. H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
    [CrossRef]
  22. N. Picqué, “Espèces moleculaires. Approches nouvelles par spectroscopie de Fourier,” Ph.D. dissertation (Université de Paris-Sud, Centre d’Orsay, 1998), order No. 5594.

1997

1995

X. Hong, T. A. Miller, “Observation of characteristic, polarity-dependent, Doppler shifts from neutral species in the positive column of a discharge plasma,” J. Chem. Phys. 103, 8821–8827 (1995).
[CrossRef]

X. Hong, T. A. Miller, “An investigation of the mechanisms of production of Ar+ emission using Doppler shifted Fourier transform spectroscopy,” Chem. Phys. Lett. 233, 298–302 (1995).
[CrossRef]

P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrosc. Acta A 51, 1117–1125 (1995).
[CrossRef]

1994

X. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).
[CrossRef]

S. Civis̆, “Infrared diode laser study of ArH+ and ArD+ ions in the positive column of an ac glow discharge,” Chem. Phys. 186, 63–76 (1994).
[CrossRef]

1993

M. Tasumi, H. Toriumi, W. G. Fateley, eds., “Contributions from the International Symposium on Advanced Infrared Spectroscopy (AIRS),” Appl. Spectrosc. 47, (1993).

1991

J. W. Farley, “Theory of the resonance line shape in velocity-modulation spectroscopy,” J. Chem. Phys. 95, 5590–5602 (1991).
[CrossRef]

A. Benidar, G. Guelachvili, P. A. Martin, “Selective detection of OH radical in emission by concentration-modulation infrared FTS,” Chem. Phys. Lett. 177, 563–567 (1991).
[CrossRef]

1990

P. A. Martin, G. Guelachvili, “Velocity-modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).
[CrossRef] [PubMed]

1989

H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
[CrossRef]

M. Elhanine, R. Farrenq, G. Guelachvili, “Polarization modulation high resolution Fourier transform spectroscopy,” Appl. Opt. 28, 4024–4029 (1989).
[CrossRef] [PubMed]

1986

1983

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).
[CrossRef]

Begeman, M. H.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).
[CrossRef]

Benidar, A.

A. Benidar, G. Guelachvili, P. A. Martin, “Selective detection of OH radical in emission by concentration-modulation infrared FTS,” Chem. Phys. Lett. 177, 563–567 (1991).
[CrossRef]

Civis?, S.

S. Civis̆, “Infrared diode laser study of ArH+ and ArD+ ions in the positive column of an ac glow discharge,” Chem. Phys. 186, 63–76 (1994).
[CrossRef]

N. Picqué, S. Civis̆, P. A. Martin, G. Guelachvili, “Rovibrational intensities for the Δv = 1 bands of 1Σ+ ArH+,” submitted to J. Mol. Spectrosc.

Crocombe, R. A.

Curbelo, R.

Dax, A.

H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
[CrossRef]

Drapcho, D. L.

Elhanine, M.

Farley, J. W.

J. W. Farley, “Theory of the resonance line shape in velocity-modulation spectroscopy,” J. Chem. Phys. 95, 5590–5602 (1991).
[CrossRef]

Farrenq, R.

Freedman, T. B.

Griffiths, P. R.

C. J. Manning, P. R. Griffiths, “Multiple-modulation double-Fourier transform IR spectrometry,” in Ninth International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 248–249 (1993).
[CrossRef]

Gudeman, C. S.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).
[CrossRef]

Guelachvili, G.

P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrosc. Acta A 51, 1117–1125 (1995).
[CrossRef]

A. Benidar, G. Guelachvili, P. A. Martin, “Selective detection of OH radical in emission by concentration-modulation infrared FTS,” Chem. Phys. Lett. 177, 563–567 (1991).
[CrossRef]

P. A. Martin, G. Guelachvili, “Velocity-modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).
[CrossRef] [PubMed]

M. Elhanine, R. Farrenq, G. Guelachvili, “Polarization modulation high resolution Fourier transform spectroscopy,” Appl. Opt. 28, 4024–4029 (1989).
[CrossRef] [PubMed]

G. Guelachvili, “Selective detection of paramagnetic species by high-information Fourier-transform spectrometry,” J. Opt. Soc. Am. B 3, 1718–1721 (1986).
[CrossRef]

N. Picqué, S. Civis̆, P. A. Martin, G. Guelachvili, “Rovibrational intensities for the Δv = 1 bands of 1Σ+ ArH+,” submitted to J. Mol. Spectrosc.

N. Picqué, G. Guelachvili, “ArH+ near 5 µm with high resolution double demodulation FTS,” Vibrat. Spectrosc. (to be published).

Hong, X.

X. Hong, T. A. Miller, “Observation of characteristic, polarity-dependent, Doppler shifts from neutral species in the positive column of a discharge plasma,” J. Chem. Phys. 103, 8821–8827 (1995).
[CrossRef]

X. Hong, T. A. Miller, “An investigation of the mechanisms of production of Ar+ emission using Doppler shifted Fourier transform spectroscopy,” Chem. Phys. Lett. 233, 298–302 (1995).
[CrossRef]

X. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).
[CrossRef]

Jiang, E. Y.

Long, F.

Manning, C. J.

C. J. Manning, P. R. Griffiths, “Multiple-modulation double-Fourier transform IR spectrometry,” in Ninth International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 248–249 (1993).
[CrossRef]

Martin, P. A.

P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrosc. Acta A 51, 1117–1125 (1995).
[CrossRef]

A. Benidar, G. Guelachvili, P. A. Martin, “Selective detection of OH radical in emission by concentration-modulation infrared FTS,” Chem. Phys. Lett. 177, 563–567 (1991).
[CrossRef]

P. A. Martin, G. Guelachvili, “Velocity-modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).
[CrossRef] [PubMed]

N. Picqué, S. Civis̆, P. A. Martin, G. Guelachvili, “Rovibrational intensities for the Δv = 1 bands of 1Σ+ ArH+,” submitted to J. Mol. Spectrosc.

McCarthy, W. J.

Miller, T. A.

X. Hong, T. A. Miller, “Observation of characteristic, polarity-dependent, Doppler shifts from neutral species in the positive column of a discharge plasma,” J. Chem. Phys. 103, 8821–8827 (1995).
[CrossRef]

X. Hong, T. A. Miller, “An investigation of the mechanisms of production of Ar+ emission using Doppler shifted Fourier transform spectroscopy,” Chem. Phys. Lett. 233, 298–302 (1995).
[CrossRef]

X. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).
[CrossRef]

Nafie, L. A.

F. Long, T. B. Freedman, T. J. Tague, L. A. Nafie, “Step-scan Fourier transform vibrational circular dichroism measurements in the vibrational region above 2000 cm-1,” Appl. Spectrosc. 51, 504–507 (1997).
[CrossRef]

L. A. Nafie, D. W. Vidrine, “Double modulation Fourier transform spectroscopy,” in Fourier Transform Infrared Spectroscopy, J. R. Ferraro, L. J. Basile, eds. (Academic, New York, 1982), Vol. 3, pp. 83–123.

Pfaff, J.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).
[CrossRef]

Picqué, N.

N. Picqué, “Spectroscopic investigation of the state-to-state dependence of ArH+ ion mobility in a He plasma,” submitted to Phys. Rev. Lett.

N. Picqué, “Espèces moleculaires. Approches nouvelles par spectroscopie de Fourier,” Ph.D. dissertation (Université de Paris-Sud, Centre d’Orsay, 1998), order No. 5594.

N. Picqué, S. Civis̆, P. A. Martin, G. Guelachvili, “Rovibrational intensities for the Δv = 1 bands of 1Σ+ ArH+,” submitted to J. Mol. Spectrosc.

N. Picqué, G. Guelachvili, “ArH+ near 5 µm with high resolution double demodulation FTS,” Vibrat. Spectrosc. (to be published).

Reinert, D.

H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
[CrossRef]

Saykally, R. J.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).
[CrossRef]

Solka, H.

H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
[CrossRef]

Stahn, A.

H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
[CrossRef]

Tague, T. J.

Urban, W.

H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
[CrossRef]

Vidrine, D. W.

L. A. Nafie, D. W. Vidrine, “Double modulation Fourier transform spectroscopy,” in Fourier Transform Infrared Spectroscopy, J. R. Ferraro, L. J. Basile, eds. (Academic, New York, 1982), Vol. 3, pp. 83–123.

Zimmermann, W.

H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. B

H. Solka, W. Zimmermann, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection technique of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
[CrossRef]

Appl. Spectrosc.

Chem. Phys.

S. Civis̆, “Infrared diode laser study of ArH+ and ArD+ ions in the positive column of an ac glow discharge,” Chem. Phys. 186, 63–76 (1994).
[CrossRef]

Chem. Phys. Lett.

A. Benidar, G. Guelachvili, P. A. Martin, “Selective detection of OH radical in emission by concentration-modulation infrared FTS,” Chem. Phys. Lett. 177, 563–567 (1991).
[CrossRef]

X. Hong, T. A. Miller, “An investigation of the mechanisms of production of Ar+ emission using Doppler shifted Fourier transform spectroscopy,” Chem. Phys. Lett. 233, 298–302 (1995).
[CrossRef]

J. Chem. Phys.

X. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).
[CrossRef]

X. Hong, T. A. Miller, “Observation of characteristic, polarity-dependent, Doppler shifts from neutral species in the positive column of a discharge plasma,” J. Chem. Phys. 103, 8821–8827 (1995).
[CrossRef]

J. W. Farley, “Theory of the resonance line shape in velocity-modulation spectroscopy,” J. Chem. Phys. 95, 5590–5602 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Rev. Lett.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).
[CrossRef]

P. A. Martin, G. Guelachvili, “Velocity-modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).
[CrossRef] [PubMed]

Spectrosc. Acta A

P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrosc. Acta A 51, 1117–1125 (1995).
[CrossRef]

Other

J. A. de Haseth, ed., Fourier Transform Spectroscopy, Eleventh International Conference, AIP Conf. Proc.430, (1998).

L. A. Nafie, D. W. Vidrine, “Double modulation Fourier transform spectroscopy,” in Fourier Transform Infrared Spectroscopy, J. R. Ferraro, L. J. Basile, eds. (Academic, New York, 1982), Vol. 3, pp. 83–123.

C. J. Manning, P. R. Griffiths, “Multiple-modulation double-Fourier transform IR spectrometry,” in Ninth International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 248–249 (1993).
[CrossRef]

N. Picqué, “Espèces moleculaires. Approches nouvelles par spectroscopie de Fourier,” Ph.D. dissertation (Université de Paris-Sud, Centre d’Orsay, 1998), order No. 5594.

N. Picqué, G. Guelachvili, “ArH+ near 5 µm with high resolution double demodulation FTS,” Vibrat. Spectrosc. (to be published).

N. Picqué, S. Civis̆, P. A. Martin, G. Guelachvili, “Rovibrational intensities for the Δv = 1 bands of 1Σ+ ArH+,” submitted to J. Mol. Spectrosc.

N. Picqué, “Spectroscopic investigation of the state-to-state dependence of ArH+ ion mobility in a He plasma,” submitted to Phys. Rev. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Detection scheme for the selective and the nonselective interferograms. In the upper part, lines 1, 5, and 6 represent, as functions of time, the bimodulated detector signal and, before integration, its processed external and internal information, respectively. The lower part of the figure shows interferograms on the path difference scale. Indexed symbols R and B are related to each other in the two parts of the figure. For more details, see the text in Subsection (2.A.1).

Fig. 2
Fig. 2

Selective and nonselective actual interferograms on the whole path difference Δ and different intensity scales. The selective interferogram (upper line) should ideally be zero at Δ = 0.

Fig. 3
Fig. 3

Portions of the nonselective and selective spectra showing the 1–0R-branch head of ArH+. The apodized resolution is of 8 × 10-3 cm-1. The lower trace is a zoom of the selective spectrum on the R(21) and the R(22) head lines.

Fig. 4
Fig. 4

Illustration of the selectivity: The R(12) line of the 3–2 band of ArH+ is overlapped by an Ar atomic line in the nonselective spectrum.

Tables (1)

Tables Icon

Table 1 Error Made on the Determination of the Doppler Shift δν as a Function of the Modulation Depth (δν/Doppler Half-Width at Half-Maximuma

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

IΔ = Bν1+cos2πνΔdν,
IΔ=I01+cos2πν0Δ,
InsΔ=I04cos2πν0+δνΔ-d+cos2πν0-δνΔ-d-cos2πν0+δνΔ+d-cos2πν0-δνΔ+d,
InsΔ=I02sin2πν0+δνdsin2πν0+δνΔ+sin2πν0-δνdsin2πν0-δνΔ.
IsΔ=I04(cos2πν0+δνΔ-d-cos2πν0-δνΔ-d-cos2πν0+δνΔ+d-cos2πν0-δνΔ+d),
IsΔ=I02sin2πν0+δνdsin2πν0+δνΔ-sin2πν0-δνdsin2πν0-δνΔ.
I0=I1+I2 cos22πfextt,
InsΔ=I1+I2/22cos2πν0Δ-d-cos2πν0Δ+d.
IsΔ=I24cos2πν0Δ-d -cos2πν0Δ+d.
fν=1ΔνDln 2πS1 exp-ln 2ν-ν0-δνΔνD2-S2 exp-ln 2ν -ν0+δνΔνD2,
fν=S 4 ln 2 δνΔνDν-ν0ΔνDln 2π1ΔνD ×exp-ln 2ν-ν0ΔνD2,

Metrics