Abstract

The optical absorption of pure liquid water in the 300–700-nm region has been measured by use of a long (1.5-m) path-length cell. The absorption spectrum coincides well with the edge of previous data in the 200–320-nm region and provides reliable data in the 320–420-nm region that has until now been a region of considerable unreliability. The data obtained for the 420–700-nm region agree quite well with the means of the existing literature in that well-studied region. The absorptions in the 550–700-nm region show evidence for the overtones and combination tones of the well-known OH stretching frequency at 3500 cm-1.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
    [CrossRef]
  2. M. Ravisankar, A. T. Reghunath, K. Sathianandan, V. P. N. Nampoori, “Effect of dissolved NaCl, MgCl2, and Na2SO4 in seawater on the optical attenuation in the region from 430 to 630 nm,” Appl. Opt. 27, 3887–3894 (1988).
    [CrossRef] [PubMed]
  3. L. P. Boivin, W. F. Davidson, R. S. Storey, D. Sinclair, E. D. Earle, “Determination of the attenuation coefficients of visible and ultraviolet radiation in heavy water,” Appl. Opt. 25, 877–882 (1986).
    [CrossRef] [PubMed]
  4. A. C. Tam, C. K. N. Patel, “Optical absorptions of light and heavy water by laser optoacoustic spectroscopy,” Appl. Opt. 18, 3348–3358 (1979).
    [CrossRef] [PubMed]
  5. M. R. Querry, P. G. Cary, R. C. Waring, “Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region,” Appl. Opt. 17, 3587–3592 (1978).
    [CrossRef] [PubMed]
  6. M. Hass, J. W. Davisson, “Absorption coefficient of pure water at 488 and 541.5 nm by adiabatic laser calorimetry,” J. Opt. Soc. Am. 67, 622–624 (1977).
    [CrossRef]
  7. K. F. Palmer, D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974).
    [CrossRef]
  8. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  9. H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d’absorption de l’eau et de l’eau lourde dans l’ultraviolet,” C. R. Acad. Sci. 261, 4701–4704 (1965).
  10. S. A. Sullivan, “Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum,” J. Opt. Soc. Am. 53, 962–968 (1963).
    [CrossRef]
  11. N. P. Grundinkina, “Absorption of ultraviolet radiation by water,” Opt. Spektrosk. 1, 658–662 (1956).
  12. J. Lenoble, B. Saint-Guilly, “Sur l’absorption de rayonnement ultraviolet par l’eau distillée,” C. R. Acad. Sci. 240, 954–955 (1955).
  13. E. O. Hulburt, “Optics of distilled and natural water,” J. Opt. Soc. Am. 35, 698–705 (1945).
    [CrossRef] [PubMed]
  14. G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
    [CrossRef]
  15. H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 31, 1–153 (1938).
  16. L. H. Dawson, E. O. Hulburt, “The absorption of ultraviolet and visible light by water,” J. Opt. Soc. Am. 24, 175–177 (1934).
    [CrossRef]
  17. C. D. Hodgman, “Transmission of ultraviolet radiation by water,” J. Opt. Soc. Am. 23, 426–429 (1933).
    [CrossRef]
  18. E. Ganz, “Über das Absorptionsspektrum von Wasser, wässrigen Lösungen und Alkoholen zwischen 0.70–0.95 µ,” Ann. Phys. (Leipzig) 26, 331–348 (1936).
    [CrossRef]
  19. W. R. Sawyer, “The spectral absorption of light by pure water and Bay of Fundy water,” Contrib. Can. Biol. Fisheries 7, 75–89 (1931).
  20. E. O. Hulburt, “The penetration of ultraviolet light into pure water and sea water,” J. Opt. Soc. Am. 17, 15–22 (1928).
    [CrossRef]
  21. J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
    [CrossRef]
  22. W. H. Martin, “The relation between light-absorption and light-scattering for liquids,” J. Phys. Chem. 26, 471–476 (1922).
    [CrossRef]
  23. W. B. Pietenpol, “Selective absorption in the visible spectrum of Wisconsin lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 19, 562–593 (1918).
  24. O. Von Aufsess, “Die Farbe der Seen,” Ann. Phys. (Leipzig) 13, 678–711 (1904).
    [CrossRef]
  25. E. Aschkinass, “Absorptionsspectrum des Flussigen Wassers,” Ann. Phys. (Leipzig) 55, 401–431 (1895).
    [CrossRef]
  26. T. Ewan, “On the absorption spectra of dilute solutions,” Proc. R. Soc. London 57, 117–129 (1894).
    [CrossRef]
  27. G. Hüfner, E. Albrecht, “Ueber die Durchlässigkeit des Wassers für Licht von Verschiedener Wellenlänge,” Ann. Phys. Chem. 42, 1–17 (1891).
  28. T. I. Quickenden, J. A. Irvin, “A search for non-Čerenkov UV emission from liquid water irradiated with pulsed electrons,” J. Chem. Phys. 73, 3632–3634 (1980).
    [CrossRef]
  29. D. S. Gill, Department of Chemistry, Panjab University, Chandigarh 160014, India (personal communication, 1997).
  30. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 73rd ed., (CRC Press, Boca Raton Fla., 1992).
  31. W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 597–604 (1994).
    [CrossRef]
  32. T. I. Quickenden, C. F. Vernon, “Red luminescence from thermally excited vibrational overtones in H2O and D2O vapor,” J. Phys. Chem. 93, 6682–6686 (1989).
    [CrossRef]

1989

T. I. Quickenden, C. F. Vernon, “Red luminescence from thermally excited vibrational overtones in H2O and D2O vapor,” J. Phys. Chem. 93, 6682–6686 (1989).
[CrossRef]

1988

1986

1980

T. I. Quickenden, J. A. Irvin, “A search for non-Čerenkov UV emission from liquid water irradiated with pulsed electrons,” J. Chem. Phys. 73, 3632–3634 (1980).
[CrossRef]

T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
[CrossRef]

1979

1978

1977

1974

1973

1965

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d’absorption de l’eau et de l’eau lourde dans l’ultraviolet,” C. R. Acad. Sci. 261, 4701–4704 (1965).

1963

1956

N. P. Grundinkina, “Absorption of ultraviolet radiation by water,” Opt. Spektrosk. 1, 658–662 (1956).

1955

J. Lenoble, B. Saint-Guilly, “Sur l’absorption de rayonnement ultraviolet par l’eau distillée,” C. R. Acad. Sci. 240, 954–955 (1955).

1945

1939

1938

H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 31, 1–153 (1938).

1936

E. Ganz, “Über das Absorptionsspektrum von Wasser, wässrigen Lösungen und Alkoholen zwischen 0.70–0.95 µ,” Ann. Phys. (Leipzig) 26, 331–348 (1936).
[CrossRef]

1934

1933

1931

W. R. Sawyer, “The spectral absorption of light by pure water and Bay of Fundy water,” Contrib. Can. Biol. Fisheries 7, 75–89 (1931).

1928

1925

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

1922

W. H. Martin, “The relation between light-absorption and light-scattering for liquids,” J. Phys. Chem. 26, 471–476 (1922).
[CrossRef]

1918

W. B. Pietenpol, “Selective absorption in the visible spectrum of Wisconsin lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 19, 562–593 (1918).

1904

O. Von Aufsess, “Die Farbe der Seen,” Ann. Phys. (Leipzig) 13, 678–711 (1904).
[CrossRef]

1895

E. Aschkinass, “Absorptionsspectrum des Flussigen Wassers,” Ann. Phys. (Leipzig) 55, 401–431 (1895).
[CrossRef]

1894

T. Ewan, “On the absorption spectra of dilute solutions,” Proc. R. Soc. London 57, 117–129 (1894).
[CrossRef]

1891

G. Hüfner, E. Albrecht, “Ueber die Durchlässigkeit des Wassers für Licht von Verschiedener Wellenlänge,” Ann. Phys. Chem. 42, 1–17 (1891).

Albrecht, E.

G. Hüfner, E. Albrecht, “Ueber die Durchlässigkeit des Wassers für Licht von Verschiedener Wellenlänge,” Ann. Phys. Chem. 42, 1–17 (1891).

Aschkinass, E.

E. Aschkinass, “Absorptionsspectrum des Flussigen Wassers,” Ann. Phys. (Leipzig) 55, 401–431 (1895).
[CrossRef]

Birge, E. A.

H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 31, 1–153 (1938).

Boivin, L. P.

Cary, P. G.

Clarke, G. L.

Collins, J. R.

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Davidson, W. F.

Davisson, J. W.

Dawson, L. H.

Earle, E. D.

Ewan, T.

T. Ewan, “On the absorption spectra of dilute solutions,” Proc. R. Soc. London 57, 117–129 (1894).
[CrossRef]

Ganz, E.

E. Ganz, “Über das Absorptionsspektrum von Wasser, wässrigen Lösungen und Alkoholen zwischen 0.70–0.95 µ,” Ann. Phys. (Leipzig) 26, 331–348 (1936).
[CrossRef]

Gélébart, F.

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d’absorption de l’eau et de l’eau lourde dans l’ultraviolet,” C. R. Acad. Sci. 261, 4701–4704 (1965).

Gill, D. S.

D. S. Gill, Department of Chemistry, Panjab University, Chandigarh 160014, India (personal communication, 1997).

Grundinkina, N. P.

N. P. Grundinkina, “Absorption of ultraviolet radiation by water,” Opt. Spektrosk. 1, 658–662 (1956).

Hale, G. M.

Hass, M.

Hodgman, C. D.

Hüfner, G.

G. Hüfner, E. Albrecht, “Ueber die Durchlässigkeit des Wassers für Licht von Verschiedener Wellenlänge,” Ann. Phys. Chem. 42, 1–17 (1891).

Hulburt, E. O.

Irvin, J. A.

T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
[CrossRef]

T. I. Quickenden, J. A. Irvin, “A search for non-Čerenkov UV emission from liquid water irradiated with pulsed electrons,” J. Chem. Phys. 73, 3632–3634 (1980).
[CrossRef]

James, H. R.

G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
[CrossRef]

H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 31, 1–153 (1938).

Johannin-Gilles, A.

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d’absorption de l’eau et de l’eau lourde dans l’ultraviolet,” C. R. Acad. Sci. 261, 4701–4704 (1965).

Larzul, H.

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d’absorption de l’eau et de l’eau lourde dans l’ultraviolet,” C. R. Acad. Sci. 261, 4701–4704 (1965).

Lenoble, J.

J. Lenoble, B. Saint-Guilly, “Sur l’absorption de rayonnement ultraviolet par l’eau distillée,” C. R. Acad. Sci. 240, 954–955 (1955).

Martin, W. H.

W. H. Martin, “The relation between light-absorption and light-scattering for liquids,” J. Phys. Chem. 26, 471–476 (1922).
[CrossRef]

Nampoori, V. P. N.

Palmer, K. F.

Patel, C. K. N.

Pegau, W. S.

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 597–604 (1994).
[CrossRef]

Pietenpol, W. B.

W. B. Pietenpol, “Selective absorption in the visible spectrum of Wisconsin lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 19, 562–593 (1918).

Querry, M. R.

Quickenden, T. I.

T. I. Quickenden, C. F. Vernon, “Red luminescence from thermally excited vibrational overtones in H2O and D2O vapor,” J. Phys. Chem. 93, 6682–6686 (1989).
[CrossRef]

T. I. Quickenden, J. A. Irvin, “A search for non-Čerenkov UV emission from liquid water irradiated with pulsed electrons,” J. Chem. Phys. 73, 3632–3634 (1980).
[CrossRef]

T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
[CrossRef]

Ravisankar, M.

Reghunath, A. T.

Saint-Guilly, B.

J. Lenoble, B. Saint-Guilly, “Sur l’absorption de rayonnement ultraviolet par l’eau distillée,” C. R. Acad. Sci. 240, 954–955 (1955).

Sathianandan, K.

Sawyer, W. R.

W. R. Sawyer, “The spectral absorption of light by pure water and Bay of Fundy water,” Contrib. Can. Biol. Fisheries 7, 75–89 (1931).

Sinclair, D.

Storey, R. S.

Sullivan, S. A.

Tam, A. C.

Vernon, C. F.

T. I. Quickenden, C. F. Vernon, “Red luminescence from thermally excited vibrational overtones in H2O and D2O vapor,” J. Phys. Chem. 93, 6682–6686 (1989).
[CrossRef]

Von Aufsess, O.

O. Von Aufsess, “Die Farbe der Seen,” Ann. Phys. (Leipzig) 13, 678–711 (1904).
[CrossRef]

Waring, R. C.

Williams, D.

Zaneveld, J. R. V.

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 597–604 (1994).
[CrossRef]

Ann. Phys. (Leipzig)

O. Von Aufsess, “Die Farbe der Seen,” Ann. Phys. (Leipzig) 13, 678–711 (1904).
[CrossRef]

E. Aschkinass, “Absorptionsspectrum des Flussigen Wassers,” Ann. Phys. (Leipzig) 55, 401–431 (1895).
[CrossRef]

E. Ganz, “Über das Absorptionsspektrum von Wasser, wässrigen Lösungen und Alkoholen zwischen 0.70–0.95 µ,” Ann. Phys. (Leipzig) 26, 331–348 (1936).
[CrossRef]

Ann. Phys. Chem.

G. Hüfner, E. Albrecht, “Ueber die Durchlässigkeit des Wassers für Licht von Verschiedener Wellenlänge,” Ann. Phys. Chem. 42, 1–17 (1891).

Appl. Opt.

C. R. Acad. Sci.

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d’absorption de l’eau et de l’eau lourde dans l’ultraviolet,” C. R. Acad. Sci. 261, 4701–4704 (1965).

J. Lenoble, B. Saint-Guilly, “Sur l’absorption de rayonnement ultraviolet par l’eau distillée,” C. R. Acad. Sci. 240, 954–955 (1955).

Contrib. Can. Biol. Fisheries

W. R. Sawyer, “The spectral absorption of light by pure water and Bay of Fundy water,” Contrib. Can. Biol. Fisheries 7, 75–89 (1931).

J. Chem. Phys.

T. I. Quickenden, J. A. Irvin, “A search for non-Čerenkov UV emission from liquid water irradiated with pulsed electrons,” J. Chem. Phys. 73, 3632–3634 (1980).
[CrossRef]

T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem.

T. I. Quickenden, C. F. Vernon, “Red luminescence from thermally excited vibrational overtones in H2O and D2O vapor,” J. Phys. Chem. 93, 6682–6686 (1989).
[CrossRef]

W. H. Martin, “The relation between light-absorption and light-scattering for liquids,” J. Phys. Chem. 26, 471–476 (1922).
[CrossRef]

Opt. Spektrosk.

N. P. Grundinkina, “Absorption of ultraviolet radiation by water,” Opt. Spektrosk. 1, 658–662 (1956).

Phys. Rev.

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Proc. R. Soc. London

T. Ewan, “On the absorption spectra of dilute solutions,” Proc. R. Soc. London 57, 117–129 (1894).
[CrossRef]

Trans. Wis. Acad. Sci. Arts. Lett.

W. B. Pietenpol, “Selective absorption in the visible spectrum of Wisconsin lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 19, 562–593 (1918).

H. R. James, E. A. Birge, “A laboratory study of the absorption of light by lake waters,” Trans. Wis. Acad. Sci. Arts. Lett. 31, 1–153 (1938).

Other

D. S. Gill, Department of Chemistry, Panjab University, Chandigarh 160014, India (personal communication, 1997).

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 73rd ed., (CRC Press, Boca Raton Fla., 1992).

W. S. Pegau, J. R. V. Zaneveld, “Temperature dependence of the absorption coefficient of pure water in the visible portion of the spectrum,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 597–604 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Published linear decadic absorption coefficients of pure liquid H2O in the 300–700-nm region. The key that relates the symbols in this figure with the authors and references and detailed conditions of measurement is shown in Table 1. The thick curve shows the means of 27 literature values, plotted at 10-nm intervals from actual data or interpolated data (provided that a sufficient number of points were available). Because of the large divergences of literature values in the 300–400-nm region, the literature mean is not continued below 400 nm. The thin curve shows the means, similarly plotted, of triplicate determinations from the present study at 298.1 K. For clarity, error bars are not shown on this graph but are shown in Fig. 3. Many of the literature values in the 300–400-nm region are so large they do not fit on the graph. Each of these values is designated by an arrow that marks the wavelength and by a number that indicates the linear decadic absorption coefficient in inverse meters. A similar problem associated with the recent determination by Ravisankar et al.2 in the 400–700-nm region is dealt with in the same way. The small dots between 300 and 320 nm represent the edge of the accurate data for the 200–320-nm region determined on highly pure water in a previous study from our laboratory.1

Fig. 2
Fig. 2

Schematic diagram (not to scale) of the vertical variable path-length optical absorption system. The absorption cell has a capacity of 1.885 l of pure water.

Fig. 3
Fig. 3

Comparison of the literature means from the data in Fig. 1 with their associated 50% confidence intervals (three continuous curves) with the data from the present study showing error bars, each of which represents the 50% confidence interval in the mean of each triplicate determination. For clarity, literature means are not continued below 400 nm.

Fig. 4
Fig. 4

Comparison between the mean of the literature absorption coefficients of pure water (with 50% confidence interval bounds) in the 400–700-nm region and the emission spectrum of thermally excited water vapor.32 Both graphs show at approximately 600 nm the overtone and combination tone of the OH stretching vibration at 3500 cm-1.

Fig. 5
Fig. 5

Mean literature values for the linear decadic absorption coefficients of water (points with 50% error bars) are compared with the apparent values (solid curve) calculated according to Eq. (2) for the amount of absorbed light lost as Rayleigh scattering.

Tables (2)

Tables Icon

Table 1 Summary of Published Linear Decadic Absorption Coefficients in the 300–700-nm Region

Tables Icon

Table 2 Mean Linear Decadic Absorption Coefficients of H2O at 298.1 Ka

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

logI/I0=-εcl,
aS=32π3kT/3λ4βTn2n/pT26+3ρ/6-7ρ/ln 10,

Metrics