Abstract

A single-beam photothermal-lensing technique to study interfaces is presented. By analysis of the reflection from a quartz–solution interface with a low-power laser in a single-beam configuration, a photothermal signal is detected. The data were fitted with a conventional thermal lens model, and the results show that the optical element formed at the interface resembles an inverted thermal lens.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Bialkowski, Photothermal Spectroscopy for Chemical Analysis (Wiley, New York, 1996), Vol. 134.
  2. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  3. A. M. Olmstead, N. M. Amer, S. Kohm, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
    [CrossRef]
  4. B. C. Li, S. Y. Zhang, “Modeling for thermal conductivity measurements of thin films using photothermal deflection with obliquely crossed configuration,” Appl. Phys. B 65, 403–409 (1997).
    [CrossRef]
  5. Z. L. Wu, M. Reichiling, X. Q. Hu, K. Balasubramanian, K. H. Guenther, “Absorption and thermal conductivity of oxide thin films measured by photothermal displacement and reflectance methods,” Appl. Opt. 32, 5660–5665 (1993).
    [CrossRef] [PubMed]
  6. H. Saito, M. Irikura, M. Haraguchi, M. Fukui, “New type of photothermal technique,” Appl. Opt. 31, 2047–2054 (1992).
    [CrossRef] [PubMed]
  7. Z. L. Wu, K. P. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).
  8. H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
    [CrossRef]
  9. C. L. C. Amaral, M. J. Politi, “Effect of urea on the dimerization equilibrium of Nickel Tetrasulfonated Phthalocyanine in bulk and in the hydrophilic compartment of AOT reversed micelles,” Langmuir 13, 4219–4222 (1997).
    [CrossRef]
  10. S. J. Sheldon, L. V. Knight, J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1984).
    [CrossRef]
  11. A change in the TL signal as a function of the pinhole position with respect to the spot beam is expected because the integrated signal is invariant. In our system when we moved the detector toward the reflected beam edge, a decrease in the magnitude of the TL signal that tends to zero in the beam periphery was observed, but the expected signal inversion was lacking. (It is important to mention that for this purpose the sample was placed at +3Zc.) This lack of inversion is probably due to the relatively low magnitude of the TL signal. (In our configuration the amount of reflected light is only ∼4% of the incident beam.) In other words, inversion is not observed owing to sensitivity reasons.
  12. N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” CRC Crit. Rev. Anal. Chem. 17 (4), 357–423 (1987).
    [CrossRef]
  13. The optical element formed at the interface has a positive focal distance (converging lens), thus an inverted signal as compared with conventional TL assays. We believe that the inverted focal distance of the thermo-optical element is a characteristic of the interface where it is formed. We are currently working on mathematical models to quantify this effect.

1998

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

1997

C. L. C. Amaral, M. J. Politi, “Effect of urea on the dimerization equilibrium of Nickel Tetrasulfonated Phthalocyanine in bulk and in the hydrophilic compartment of AOT reversed micelles,” Langmuir 13, 4219–4222 (1997).
[CrossRef]

B. C. Li, S. Y. Zhang, “Modeling for thermal conductivity measurements of thin films using photothermal deflection with obliquely crossed configuration,” Appl. Phys. B 65, 403–409 (1997).
[CrossRef]

1993

1992

1987

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” CRC Crit. Rev. Anal. Chem. 17 (4), 357–423 (1987).
[CrossRef]

1984

1983

A. M. Olmstead, N. M. Amer, S. Kohm, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

1981

Amaral, C. L. C.

C. L. C. Amaral, M. J. Politi, “Effect of urea on the dimerization equilibrium of Nickel Tetrasulfonated Phthalocyanine in bulk and in the hydrophilic compartment of AOT reversed micelles,” Langmuir 13, 4219–4222 (1997).
[CrossRef]

Amer, N. M.

A. M. Olmstead, N. M. Amer, S. Kohm, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

Balasubramanian, K.

Bialkowski, S. E.

S. E. Bialkowski, Photothermal Spectroscopy for Chemical Analysis (Wiley, New York, 1996), Vol. 134.

Boccara, A. C.

Dovichi, N. J.

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” CRC Crit. Rev. Anal. Chem. 17 (4), 357–423 (1987).
[CrossRef]

Fournier, D.

Fukui, M.

Gu, S. T.

Z. L. Wu, K. P. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

Guenther, K. H.

Haraguchi, M.

Hu, X. Q.

Inoue, T.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Irikura, M.

Jackson, W. B.

Kaieda, T.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Kawazumi, H.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Knight, L. V.

Kohm, S.

A. M. Olmstead, N. M. Amer, S. Kohm, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Kuo, K. P.

Z. L. Wu, K. P. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

Li, B. C.

B. C. Li, S. Y. Zhang, “Modeling for thermal conductivity measurements of thin films using photothermal deflection with obliquely crossed configuration,” Appl. Phys. B 65, 403–409 (1997).
[CrossRef]

Lu, Y. S.

Z. L. Wu, K. P. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

Ogawa, T.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Olmstead, A. M.

A. M. Olmstead, N. M. Amer, S. Kohm, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Politi, M. J.

C. L. C. Amaral, M. J. Politi, “Effect of urea on the dimerization equilibrium of Nickel Tetrasulfonated Phthalocyanine in bulk and in the hydrophilic compartment of AOT reversed micelles,” Langmuir 13, 4219–4222 (1997).
[CrossRef]

Reichiling, M.

Saito, H.

Sheldon, S. J.

Thorne, J. M.

Wu, Z. L.

Z. L. Wu, M. Reichiling, X. Q. Hu, K. Balasubramanian, K. H. Guenther, “Absorption and thermal conductivity of oxide thin films measured by photothermal displacement and reflectance methods,” Appl. Opt. 32, 5660–5665 (1993).
[CrossRef] [PubMed]

Z. L. Wu, K. P. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

Zhang, S. Y.

B. C. Li, S. Y. Zhang, “Modeling for thermal conductivity measurements of thin films using photothermal deflection with obliquely crossed configuration,” Appl. Phys. B 65, 403–409 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. A

A. M. Olmstead, N. M. Amer, S. Kohm, “Photothermal displacement spectroscopy: an optical probe for solids and surfaces,” Appl. Phys. A 32, 141–154 (1983).
[CrossRef]

Appl. Phys. B

B. C. Li, S. Y. Zhang, “Modeling for thermal conductivity measurements of thin films using photothermal deflection with obliquely crossed configuration,” Appl. Phys. B 65, 403–409 (1997).
[CrossRef]

Chem. Phys. Lett.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

CRC Crit. Rev. Anal. Chem.

N. J. Dovichi, “Thermo-optical spectrophotometries in analytical chemistry,” CRC Crit. Rev. Anal. Chem. 17 (4), 357–423 (1987).
[CrossRef]

Langmuir

C. L. C. Amaral, M. J. Politi, “Effect of urea on the dimerization equilibrium of Nickel Tetrasulfonated Phthalocyanine in bulk and in the hydrophilic compartment of AOT reversed micelles,” Langmuir 13, 4219–4222 (1997).
[CrossRef]

Other

A change in the TL signal as a function of the pinhole position with respect to the spot beam is expected because the integrated signal is invariant. In our system when we moved the detector toward the reflected beam edge, a decrease in the magnitude of the TL signal that tends to zero in the beam periphery was observed, but the expected signal inversion was lacking. (It is important to mention that for this purpose the sample was placed at +3Zc.) This lack of inversion is probably due to the relatively low magnitude of the TL signal. (In our configuration the amount of reflected light is only ∼4% of the incident beam.) In other words, inversion is not observed owing to sensitivity reasons.

Z. L. Wu, K. P. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

The optical element formed at the interface has a positive focal distance (converging lens), thus an inverted signal as compared with conventional TL assays. We believe that the inverted focal distance of the thermo-optical element is a characteristic of the interface where it is formed. We are currently working on mathematical models to quantify this effect.

S. E. Bialkowski, Photothermal Spectroscopy for Chemical Analysis (Wiley, New York, 1996), Vol. 134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Block diagram of the single-beam apparatus for interface thermal lensing. The reflection from the first inner interface is isolated, and its center intensity is analyzed in the far field (θ = 70°).

Fig. 2
Fig. 2

Interface TL transient obtained from a [NiPTS] = 38 mM ethanol–water (1:1) solution (curve). A thermal time constant of t c = 18.4 ms was obtained from the fit with the aberrant TL model (circles). The inset shows the concentration dependence of the photothermal signal for two different solvents.

Fig. 3
Fig. 3

Photothermal signal as a function of the distance from the beam-focusing point measured by use of the conventional TL ([NiPTS] = 10-5 M, methanol) and the interface thermal-lensing ([NiPTS] = 4.10-4 M, water) configurations. The zero in the X axis is the lens focal point.

Metrics