Abstract

We report what we believe to be the first stand-alone integrated electro-optic lens and scanner fabricated on a single crystal of Z-cut LiTaO3. The independently controlled lens and scanner components consist of lithographically defined domain-inverted regions extending through the thickness of the crystal. A lens power of 0.233 cm-1 kV-1 and a deflection angle of 12.68 mrad kV-1 were observed at the output of the device.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
    [CrossRef]
  2. C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
    [CrossRef]
  3. K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
    [CrossRef]
  4. C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field Application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
    [CrossRef]
  5. Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
    [CrossRef]
  6. J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
    [CrossRef]
  7. N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum Electron. 33, 152–163 (1997).
    [CrossRef]
  8. M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
    [CrossRef]
  9. M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
    [CrossRef]
  10. V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
    [CrossRef]
  11. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
    [CrossRef]
  12. M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
    [CrossRef] [PubMed]
  13. V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
    [CrossRef]
  14. J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectr. 5, 45–52 (1968).
    [CrossRef]

1998

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

1997

N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum Electron. 33, 152–163 (1997).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

1996

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

1994

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

1992

K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
[CrossRef]

1978

1976

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

1968

J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectr. 5, 45–52 (1968).
[CrossRef]

Baron, C.

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field Application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
[CrossRef]

Burke, J. J.

N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum Electron. 33, 152–163 (1997).
[CrossRef]

Chen, Q. B.

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Cheng, H.

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field Application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
[CrossRef]

Cheng, H. C.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

Chiu, Y.

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Feit, M. D.

M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Fleck, J. A.

M. D. Feit, J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Gopalan, V.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

Gupta, M. C.

V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field Application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
[CrossRef]

Jia, Q. X.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

Kawas, M. J.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

Lambeth, D. N.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Li, J.

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

Lotspeich, J. F.

J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectr. 5, 45–52 (1968).
[CrossRef]

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
[CrossRef]

Morris, J. R.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Ooki, H.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Ramanujam, N.

N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum Electron. 33, 152–163 (1997).
[CrossRef]

Robinson, J. M.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

Saitoh, M.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Schlesinger, T. E.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Stancil, D. D.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Yamada, M.

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high-energy laser-beams through atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Appl. Phys. Lett.

C. Baron, H. Cheng, M. C. Gupta, “Domain inversion in LiTaO3 and LiNbO3 by electric-field application on chemically patterned crystals,” Appl. Phys. Lett. 68, 481–483 (1996).
[CrossRef]

K. Mizuuchi, K. Yamamoto, “Highly efficient quasi-phase-matched 2nd-harmonic generation using a 1st-order periodically domain-inverted LiTaO3 wave-guide,” Appl. Phys. Lett. 60, 1283–1285 (1992).
[CrossRef]

M. Yamada, M. Saitoh, H. Ooki, “Electric-field-induced cylindrical lens; switching and deflection devices composed of the inverted domains in LiNbO3 crystals,” Appl. Phys. Lett. 69, 3659–3661 (1996).
[CrossRef]

IEEE J. Quantum Electron.

N. Ramanujam, J. J. Burke, “Optimizing KTP and LiTaO3 channel wave-guides for quasi-phase-matched 2nd-harmonic generation with high conversion efficiency,” IEEE J. Quantum Electron. 33, 152–163 (1997).
[CrossRef]

IEEE Photonics Technol. Lett.

V. Gopalan, M. J. Kawas, M. C. Gupta, T. E. Schlesinger, D. D. Stancil, “Integrated quasi-phase-matched 2nd-harmonic generator and electro-optic scanner on LiTaO3 single-crystals,” IEEE Photonics Technol. Lett. 8, 1704–1706 (1996).
[CrossRef]

J. Li, H. C. Cheng, M. J. Kawas, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Electro-optic wafer beam deflector in LiTaO3,” IEEE Photonics Technol. Lett. 8, 1486–1488 (1996).
[CrossRef]

IEEE Spectr.

J. F. Lotspeich, “Electro-optic light-beam deflection,” IEEE Spectr. 5, 45–52 (1968).
[CrossRef]

Integr. Ferroelectr.

V. Gopalan, T. E. Mitchell, Q. X. Jia, J. M. Robinson, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Ferroelectrics as a versatile solid-state platform for integrated-optics,” Integr. Ferroelectr. 22, 985–991 (1998).
[CrossRef]

J. Appl. Phys.

V. Gopalan, M. C. Gupta, “Origin of internal field and visualization of 180-degree domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

J. Lightwave Technol.

M. J. Kawas, T. E. Schlesinger, D. D. Stancil, V. Gopalan, “Electro-optic lens stacks on LiTaO3 by domain inversion,” J. Lightwave Technol. 15, 1716–1719 (1997).
[CrossRef]

Q. B. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol. 12, 1401–1404 (1994).
[CrossRef]

Other

C. Baron, H. Cheng, M. C. Gupta, “Periodic domain inversion in ion exchanged LiTaO3 by electric field Application,” in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky, D. C. MacPherson, eds., Proc. SPIE2700, 118–121 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of the ferroelectric domains of the integrated electro-optic lens scanner. The side view (top) depicts the path of the laser through the device and the position of electrodes used to induce the electro-optic effect. The view from above (middle) shows the domain boundaries defining the lens stack and the scanner that extend through the crystal. Six devices were fabricated on a single 17 mm × 10 mm × 225 µm crystal. Dimensions of the domains in a single stack are also shown (bottom).

Fig. 2
Fig. 2

Simulated propagation of a 632.8-nm He–Ne laser beam through the lens scanner. With an 8 kV/mm field applied to the crystal, the beam is focused and deflected to a point approximately 17 mm from the output face of the device at an angle of 25 mrad. Measured device dimensions were used in the fast Fourier-transform beam-propagation method simulation.

Fig. 3
Fig. 3

Images of ferroelectric domains of portion (a) of the lens and (b) of the scanner obtained with polarized light microscopy.

Fig. 4
Fig. 4

Diagram of device-testing apparatus. A vertically polarized beam from the He–Ne laser is first collimated with a circular lens (not shown) and then focused in the vertical direction by a cylindrical lens (f = 100 mm) through the electro-optic device. The electric fields are applied independently to the lens and the scanner components to focus and deflect the beam observed with a CCD camera placed some distance from the output.

Fig. 5
Fig. 5

CCD images of the beam profile at a distance of 132 mm from the output face of the device for three different values of the lens voltage, V l equal to 0, 100, and 260 V. The corresponding 1/e 2 diameter of the beam along the x axis, through the centroid of the intensity distribution, is shown below the images.

Fig. 6
Fig. 6

Measured lens power as a function of applied voltage, V l . The solid line indicates the theoretical dependence of the lens power with a thin-lens approximation, ϕ = 2ΔnN l /R.

Fig. 7
Fig. 7

Measured deflection angle as a function of applied voltage, V s . The solid line indicates the theoretical dependence of the deflection angle with θ d = 2ΔnL/W.

Fig. 8
Fig. 8

Multiple-exposure image of the beam profile at D = 143 mm over a range of scanning voltages from V s equal to -750 to 750 V. A lens voltage of V l = 300 V is applied to maximize the number of resolvable spots in this plane. A line plot below the image shows the intensity profile along the horizontal dotted line in the image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn=½ne3r33V/t,

Metrics