Abstract

We demonstrate that high-resolution incoherent-to-coherent conversion can be carried out in an incoherent-to-coherent converter based on the photorefractive fanning effect. The output coherent image has the same direction as the incident coherent beam, and thus the resolution is not limited by the grating diffraction. We obtained a resolution as high as 90.5 line pairs/mm in this experiment. The transmittance of the coherent beam relative to the intensity of the incoherent beam was measured. We also theoretically estimated the resolving power with respect to the interaction length. The numerical results agree well with the experiments.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Klein, G. J. Dunning, G. C. Valley, R. C. Lind, T. R. O’Meara, “Imaging threshold detecter using a phase-conjugate resonator in BaTiO3,” Opt. Lett. 11, 575–577 (1986).
    [CrossRef] [PubMed]
  2. Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3367 (1983).
    [CrossRef] [PubMed]
  3. E. Voit, P. Günter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals,” Opt. Lett. 12, 769–771 (1987).
    [CrossRef] [PubMed]
  4. C.-C. Sun, M.-W. Chang, K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter by using an anisotropic strong volume hologram,” Opt. Lett. 18, 655–657 (1993).
    [CrossRef] [PubMed]
  5. A. Marrakchi, “Photorefractive spatial light modulation based on enhanced self-diffraction in sillenite crystals,” Opt. Lett. 13, 654–656 (1988).
    [CrossRef] [PubMed]
  6. E. J. Sharp, G. L. Wood, W. W. Clark, G. J. Salamo, R. R. Neurgaonkar, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992).
    [CrossRef] [PubMed]
  7. J. Ma, L. Liu, S. Wu, Z. Wang, L. Xu, “Grating-encoded multichannel photorefractive incoherent-to-coherent optical conversion,” Opt. Lett. 14, 572–574 (1989).
    [CrossRef] [PubMed]
  8. J. Zhang, H. Wang, S. Yoshikado, T. Aruga, “Incoherent-to-coherent conversion by use of the photorefractive fanning effect,” Opt. Lett. 22, 1612–1614 (1997).
    [CrossRef]
  9. P. Amrhein, P. Günter, “Resolution limit for anisotropic Bragg diffraction from finite holographic gratings,” Opt. Lett. 15, 1173–1175 (1990).
    [CrossRef] [PubMed]
  10. C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
    [CrossRef]
  11. M. Segev, Y. Ophir, B. Fischer, “Nonlinear multi two-wave mixing, the fanning process and its bleaching in photorefractive media,” Opt. Commun. 77, 265–274 (1990).
    [CrossRef]
  12. M. Segev, D. Engin, A. Yariv, G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18, 956–958 (1993).
    [CrossRef] [PubMed]
  13. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), p. 333.

1997 (1)

1995 (1)

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

1993 (2)

1992 (1)

1990 (2)

P. Amrhein, P. Günter, “Resolution limit for anisotropic Bragg diffraction from finite holographic gratings,” Opt. Lett. 15, 1173–1175 (1990).
[CrossRef] [PubMed]

M. Segev, Y. Ophir, B. Fischer, “Nonlinear multi two-wave mixing, the fanning process and its bleaching in photorefractive media,” Opt. Commun. 77, 265–274 (1990).
[CrossRef]

1989 (1)

1988 (1)

1987 (1)

1986 (1)

1983 (1)

Amrhein, P.

Aruga, T.

Born, M.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), p. 333.

Chang, M.-W.

Clark, W. W.

Dunning, G. J.

Engin, D.

Fischer, B.

M. Segev, Y. Ophir, B. Fischer, “Nonlinear multi two-wave mixing, the fanning process and its bleaching in photorefractive media,” Opt. Commun. 77, 265–274 (1990).
[CrossRef]

Günter, P.

Hsu, K. Y.

Hui, M.

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

Klein, M. B.

Lind, R. C.

Liu, L.

Ma, J.

Marrakchi, A.

Neurgaonkar, R. R.

O’Meara, T. R.

Ophir, Y.

M. Segev, Y. Ophir, B. Fischer, “Nonlinear multi two-wave mixing, the fanning process and its bleaching in photorefractive media,” Opt. Commun. 77, 265–274 (1990).
[CrossRef]

Psaltis, D.

Salamo, G. J.

Segev, M.

M. Segev, D. Engin, A. Yariv, G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18, 956–958 (1993).
[CrossRef] [PubMed]

M. Segev, Y. Ophir, B. Fischer, “Nonlinear multi two-wave mixing, the fanning process and its bleaching in photorefractive media,” Opt. Commun. 77, 265–274 (1990).
[CrossRef]

Sharp, E. J.

Shi, Y.

Sun, C.-C.

Tanguay, A. R.

Valley, G. C.

Voit, E.

Wang, H.

Wang, Z.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), p. 333.

Wood, G. L.

Wu, S.

Wu, X.

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

Xu, L.

Yang, C.

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

Yariv, A.

Yeh, P.

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

Yi, X.

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

Yoshikado, S.

Zhang, J.

Zhang, Y.

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

Zhu, Y.

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

C. Yang, Y. Zhang, X. Yi, P. Yeh, Y. Zhu, M. Hui, X. Wu, “Intensity-dependent absorption and photorefractive properties in cerium-doped BaTiO3 crystals,” J. Appl. Phys. 78, 4323–4330 (1995).
[CrossRef]

Opt. Commun. (1)

M. Segev, Y. Ophir, B. Fischer, “Nonlinear multi two-wave mixing, the fanning process and its bleaching in photorefractive media,” Opt. Commun. 77, 265–274 (1990).
[CrossRef]

Opt. Lett. (9)

M. Segev, D. Engin, A. Yariv, G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18, 956–958 (1993).
[CrossRef] [PubMed]

M. B. Klein, G. J. Dunning, G. C. Valley, R. C. Lind, T. R. O’Meara, “Imaging threshold detecter using a phase-conjugate resonator in BaTiO3,” Opt. Lett. 11, 575–577 (1986).
[CrossRef] [PubMed]

E. Voit, P. Günter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals,” Opt. Lett. 12, 769–771 (1987).
[CrossRef] [PubMed]

C.-C. Sun, M.-W. Chang, K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter by using an anisotropic strong volume hologram,” Opt. Lett. 18, 655–657 (1993).
[CrossRef] [PubMed]

A. Marrakchi, “Photorefractive spatial light modulation based on enhanced self-diffraction in sillenite crystals,” Opt. Lett. 13, 654–656 (1988).
[CrossRef] [PubMed]

E. J. Sharp, G. L. Wood, W. W. Clark, G. J. Salamo, R. R. Neurgaonkar, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992).
[CrossRef] [PubMed]

J. Ma, L. Liu, S. Wu, Z. Wang, L. Xu, “Grating-encoded multichannel photorefractive incoherent-to-coherent optical conversion,” Opt. Lett. 14, 572–574 (1989).
[CrossRef] [PubMed]

J. Zhang, H. Wang, S. Yoshikado, T. Aruga, “Incoherent-to-coherent conversion by use of the photorefractive fanning effect,” Opt. Lett. 22, 1612–1614 (1997).
[CrossRef]

P. Amrhein, P. Günter, “Resolution limit for anisotropic Bragg diffraction from finite holographic gratings,” Opt. Lett. 15, 1173–1175 (1990).
[CrossRef] [PubMed]

Other (1)

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), p. 333.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experimental setup: RC, U.S. Air Force resolution chart; L1, L2, achromatic lenses with a focal length of 400 mm; L3, achromatic lens with a focal length of 100 mm; BS, beam splitter; M1, M2, mirrors; PBS, polarized beam splitter.

Fig. 2
Fig. 2

(a) Typical top-view photograph of the crystals and (b) the output pattern of the coherent beam without the incoherent beam.

Fig. 3
Fig. 3

Transmittance of the coherent beam versus its external incident angle α for the 41-ppm crystal. The solid curve is a guide for the eye.

Fig. 4
Fig. 4

Photographs of output coherent images for the 12-ppm crystal at (a) α = 10° and (b) α = 30°. Here the intensity ratio is β = 5.

Fig. 5
Fig. 5

Photographs of (a)–(c) the incoherent image on the crystal and (d)–(f) the output coherent image for the 41-ppm crystal for several magnifications when β = 5.

Fig. 6
Fig. 6

Photographs of the output coherent images for the 41-ppm crystal for β values of (a) 2, (b) 1, and (c) 0.5 when α = 10°.

Fig. 7
Fig. 7

Transmittance of the coherent image versus β for the 41-ppm crystal for (filled squares) α = -10° and (open circles) α = 10° when the incoherent image was a 1-mm-diameter aperture.

Fig. 8
Fig. 8

(a) Intensity distribution of the incoherent image and its average-intensity distribution over the interaction region in the crystal for d equal to (b) 10, (c) 5, and (d) 3.33 µm (responding to resolutions of 50, 100, and 150 lp/mm, respectively). Here n = 2.4, λ = 532 nm, and z 0 = 0.8 mm.

Fig. 9
Fig. 9

Resolving power versus interaction length z 0. Here n = 2.4 and λ = 532 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ax=m=-11 rectxd-2m,
Ax, z=qx fqx, zexpixqx+zk2-qx2,

Metrics