Abstract

We report frequency doubling of a low-power cw diode laser at 1064 nm in an external ring cavity by use of an angle-tuned KTP type II crystal. We demonstrate a new setup that requires no temperature stabilization of the crystal. An intracavity λ/2 plate rotates the polarization of the fundamental after each cavity round trip by 90°; this provides the two eigenpolarizations of the crystal required for a type II nonlinear process. As a result, it is possible to maintain the resonance condition by use of a standard locking circuit.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Dixon, “OEM markets open to diode-based visible lasers,” Laser Focus 33(4) , 85–92 (1987).
  2. Casix, Inc., Fujian, China, Crystal Guide 97/98 Catalog (1997).
  3. Z. Y. Ou, S. F. Pereira, E. S. Polzik, H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54 µm,” Opt. Lett. 17, 640–642 (1992).
    [CrossRef] [PubMed]
  4. V. M. Garmash, G. A. Ermakov, N. I. Pavlova, “Efficient second-harmonic generation in potassium titanate–phosphate crystals with noncritical matching,” Sov. Tech. Phys. Lett. 12, 505–506 (1986).
  5. F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).
  6. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).
  7. P. E. Perkins, T. S. Fahlen, “20-W average-power KTP intracavity-doubled Nd:YAG laser,” J. Opt. Soc. Am. B 4, 1066–1071 (1987).
    [CrossRef]
  8. L. K. Samantana, T. Yanagawa, Y. Yamamoto, “Technique for enhanced second harmonic output power,” Opt. Commun. 76, 250–252 (1990).
    [CrossRef]
  9. J.-J. Zondy, M. Abed, S. Khodja, “Twin-crystal walk-off-compensated type-II second-harmonic generation: single-pass and cavity enhanced experiments in KTiOPO4,” J. Opt. Soc. Am. B 11, 2368–2379 (1994).
    [CrossRef]
  10. Paraxia, ABCD Matrix Code V. 1.0 (Stanford University, Stanford, Calif., 1990).
  11. J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991).
    [CrossRef]
  12. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3637 (1968).
    [CrossRef]

1994

1992

1991

J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991).
[CrossRef]

1990

L. K. Samantana, T. Yanagawa, Y. Yamamoto, “Technique for enhanced second harmonic output power,” Opt. Commun. 76, 250–252 (1990).
[CrossRef]

1987

G. J. Dixon, “OEM markets open to diode-based visible lasers,” Laser Focus 33(4) , 85–92 (1987).

P. E. Perkins, T. S. Fahlen, “20-W average-power KTP intracavity-doubled Nd:YAG laser,” J. Opt. Soc. Am. B 4, 1066–1071 (1987).
[CrossRef]

1986

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, “Efficient second-harmonic generation in potassium titanate–phosphate crystals with noncritical matching,” Sov. Tech. Phys. Lett. 12, 505–506 (1986).

1968

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3637 (1968).
[CrossRef]

Abed, M.

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3637 (1968).
[CrossRef]

Dixon, G. J.

G. J. Dixon, “OEM markets open to diode-based visible lasers,” Laser Focus 33(4) , 85–92 (1987).

Ermakov, G. A.

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, “Efficient second-harmonic generation in potassium titanate–phosphate crystals with noncritical matching,” Sov. Tech. Phys. Lett. 12, 505–506 (1986).

Fahlen, T. S.

Garmash, V. M.

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, “Efficient second-harmonic generation in potassium titanate–phosphate crystals with noncritical matching,” Sov. Tech. Phys. Lett. 12, 505–506 (1986).

Khodja, S.

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3637 (1968).
[CrossRef]

Midwinter, J. E.

F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Ou, Z. Y.

Pavlova, N. I.

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, “Efficient second-harmonic generation in potassium titanate–phosphate crystals with noncritical matching,” Sov. Tech. Phys. Lett. 12, 505–506 (1986).

Pereira, S. F.

Perkins, P. E.

Polzik, E. S.

Samantana, L. K.

L. K. Samantana, T. Yanagawa, Y. Yamamoto, “Technique for enhanced second harmonic output power,” Opt. Commun. 76, 250–252 (1990).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Yamamoto, Y.

L. K. Samantana, T. Yanagawa, Y. Yamamoto, “Technique for enhanced second harmonic output power,” Opt. Commun. 76, 250–252 (1990).
[CrossRef]

Yanagawa, T.

L. K. Samantana, T. Yanagawa, Y. Yamamoto, “Technique for enhanced second harmonic output power,” Opt. Commun. 76, 250–252 (1990).
[CrossRef]

Zernicke, F.

F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Zondy, J.-J.

J.-J. Zondy, M. Abed, S. Khodja, “Twin-crystal walk-off-compensated type-II second-harmonic generation: single-pass and cavity enhanced experiments in KTiOPO4,” J. Opt. Soc. Am. B 11, 2368–2379 (1994).
[CrossRef]

J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991).
[CrossRef]

J. Appl. Phys.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3637 (1968).
[CrossRef]

J. Opt. Soc. Am. B

Laser Focus

G. J. Dixon, “OEM markets open to diode-based visible lasers,” Laser Focus 33(4) , 85–92 (1987).

Opt. Commun.

L. K. Samantana, T. Yanagawa, Y. Yamamoto, “Technique for enhanced second harmonic output power,” Opt. Commun. 76, 250–252 (1990).
[CrossRef]

J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with Gaussian beams,” Opt. Commun. 81, 427–440 (1991).
[CrossRef]

Opt. Lett.

Sov. Tech. Phys. Lett.

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, “Efficient second-harmonic generation in potassium titanate–phosphate crystals with noncritical matching,” Sov. Tech. Phys. Lett. 12, 505–506 (1986).

Other

F. Zernicke, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Casix, Inc., Fujian, China, Crystal Guide 97/98 Catalog (1997).

Paraxia, ABCD Matrix Code V. 1.0 (Stanford University, Stanford, Calif., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic setup of our cavity for external-cavity second-harmonic generation. The λ/2 plate in the cavity rotates the polarization by 90° after each round trip. Thus extraordinary and ordinary beams for the type II phase-matched process are provided. The other optical components are AP, a pair of anamorphic prisms; L1 L2, lenses; M1–M6, mirrors; Pz, piezoelectric transducer; PD, photodiode; P1, P2, polarizers; F1, Faraday rotator; P, prism.

Fig. 2
Fig. 2

Output power at 532 nm for alignment of the KTP crystal axis parallel with respect to the input polarization (solid curve) and alignment at 45° with respect to the input polarization (dotted curve). In both cases the λ/2 plate is in the cavity. In the former case the output power is independent of the temperature; the latter case exhibits a cos2 dependence, as discussed in the text.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

EcXYEcZ=tEinXYEinZ+MEcXYEcZ,
MT=r expikLαZexpinZkd00αXYexpinXYkd,
kL+nZTd=2πn,  n=1, 2, ,
kL+nXYTd=2πm,  m =1, 2, .
M1rt=r expikL0αZ expinZkdαXY expinXYkd0;
M2rt=M1rt2=r2αZαXY exp(ik2L+nZT+nXYTd)1001.
k2L+nZT+nXYTd=2πn,  n=1, 2, ,
|EcZ|2|EinZ+rαXY expikL+nXYTdEinXY|2.
PXY=t1-r2αZαXY2Pi=1rαXY2PZ.
η=8TENLPi2-1-T2--2ηENLPi2,
=πReff/1-Reff.

Metrics