Abstract

A method is reported that makes use of holography to study the kinetics of the radical photopolymerization of acrylamide in a polyvinyl alcohol when the Kogelnik theory is applied. A mechanism of unimolecular termination by the radicals that initiate the polymerization reaction is postulated to calculate the quantum yield, the molar-extinction coefficient, the index of refraction, and the thickness of the film. The conversion percentage of monomers is obtained along with the ratio of rate constants of the mechanism of polymerization from the nonlinear fit of the transmittance curves, their angular response, and the temporal evolution of diffraction efficiency. Compared with previous holographic techniques, this method has the advantage of predicting these chemical parameters using all the data points of the temporal diffraction efficiency variation rather than being restricted to the linear zone of these curves. In this way the whole reaction process, not just the initial process, is taken into account.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Odian, Principles of Polymerization (Wiley, New York, 1993), pp. 198–331.
  2. R. Sastre, M. Conde, J. L. Mateo, “Photoinitiated bulk polymerization of lauryl acrylate by N-acetyl-4-nitro-1-naphthylamine in the presence of N,N′-dimethylaniline,” J. Photochem. Photobiol. A. Chem. 44, 111–122 (1988).
    [CrossRef]
  3. G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
    [CrossRef]
  4. L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
    [CrossRef]
  5. H. J. Caulfield, ed., Handbook of Optical Holography (Academic, London, 1979), pp. 415–462.
  6. G. T. Sincerbox, Laser Beam Theory (Marcel Dekker, New York, 1985), pp. 1–62.
  7. W. H. Lee, “Holographic optical head for compact disk applications,” Opt. Eng. 28, 650–653 (1989).
    [CrossRef]
  8. R. Arrathoon, “Historical perspectives: optical crossbars and optical computing,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 1–11 (1987).
  9. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).
  10. S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
    [CrossRef]
  11. R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” in Processes in Photorefractive Polymers, V. V. Krongauz, A. D. Trifunac, eds. (Chapman & Hall, London, 1995, pp. 307–367.
  12. C. Braüchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
    [CrossRef]
  13. D. M. Burland, “Applications of holography in the investigation of photochemical reactions,” Acc. Chem. Res. 16, 218–224 (1983).
    [CrossRef]
  14. D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
    [CrossRef]
  15. F. W. Deeg, J. Pinsl, C. Braüchle, J. Voitländer, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79, 1229–1234 (1983).
    [CrossRef]
  16. F. W. Deeg, J. Pinsl, C. Braüchle, “New grating experiments in the study of irreversible photochemical reactions,” IEEE J. Quantum Electron. QE-22, 1476–1481 (1986).
    [CrossRef]
  17. F. W. Deeg, J. Pinsl, C. Braüchle, “Two-photon four-level hologram recording in poly-(alkyl-α-cyanoacrylates),” Appl. Phys. B 40, 77–84 (1986).
    [CrossRef]
  18. C. Braüchle, D. M. Burland, G. C. Bjorklund, “Study of the photolysis of dimethyl-s-tetrazine using a holographic technique,” J. Am. Chem. Soc. 103, 2516–2519 (1981).
  19. D. M. Burland, G. C. Bjorklund, D. C. Alvarez, “Use of holography to investigate photochemical reactions,” J. Am. Chem. Soc. 102, 7119–7120 (1980).
    [CrossRef]
  20. J. Pinsl, M. Gehrtz, A. Reggel, C. Braüchle, “Photochemistry of tertiary nitrosoalkanes in solid polymer matrices: a promising new class of organic materials for holographic recording with semiconductor lasers,” J. Am. Chem. Soc. 109, 6479–6486 (1987).
    [CrossRef]
  21. J. Pinsl, M. Gehrtz, C. Braüchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
    [CrossRef]
  22. C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
    [CrossRef]
  23. G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, T. A. Sarbaev, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency,” Opt. Spectrosc. 82, 131–137 (1997).
  24. G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: I. General system of equations,” Opt. Specrosc. 81, 947–952 (1996) and the references cited therein.
  25. H. Smith, Principles of Holography, (Wiley, New York, 1975), pp. 112–122.
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  27. R. H. Kayser, R. H. Young, “The photoreduction of methylene blue and amines-I. a flash photolysis study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
    [CrossRef]
  28. S. G. Cohen, A. Parola, G. H. Parsons, “Photoreduction by amines,” Chem. Rev. 73, 141–161 (1973).
    [CrossRef]
  29. N. J. Turro, Modern Molecular Photochemistry (University Science, Mill Valley, Calif., 1991), pp. 76–152.
  30. T. Lyubimova, P. G. Righetti, “On the kinetics of photopolymerization: a theoretical study,” Electrophoresis 14, 191–201 (1993).
    [CrossRef] [PubMed]
  31. S. Piazolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996).
    [CrossRef]
  32. K. Levenberg, “A method for the solution of certain problems of least squares,” Q. Appl. Math. 2, 164–168 (1944).
  33. D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
    [CrossRef]
  34. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
    [CrossRef]
  35. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1987), pp. 40–41.
  36. L. Carretero, S. Blaya, A. Fimia, A. Beléndez, R. F. Madrigal, “Real time transmittance function in photopolymers of acrylamide composition: noise gratings,” in Holographic and Diffractive Techniques, G. J. Dausmann, ed., Proc. SPIE2951, 20–24 (1996).
    [CrossRef]
  37. T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979).
    [CrossRef]

1998 (1)

1997 (2)

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, T. A. Sarbaev, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency,” Opt. Spectrosc. 82, 131–137 (1997).

S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
[CrossRef]

1996 (3)

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: I. General system of equations,” Opt. Specrosc. 81, 947–952 (1996) and the references cited therein.

S. Piazolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996).
[CrossRef]

1993 (2)

T. Lyubimova, P. G. Righetti, “On the kinetics of photopolymerization: a theoretical study,” Electrophoresis 14, 191–201 (1993).
[CrossRef] [PubMed]

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

1989 (2)

W. H. Lee, “Holographic optical head for compact disk applications,” Opt. Eng. 28, 650–653 (1989).
[CrossRef]

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

1988 (1)

R. Sastre, M. Conde, J. L. Mateo, “Photoinitiated bulk polymerization of lauryl acrylate by N-acetyl-4-nitro-1-naphthylamine in the presence of N,N′-dimethylaniline,” J. Photochem. Photobiol. A. Chem. 44, 111–122 (1988).
[CrossRef]

1987 (1)

J. Pinsl, M. Gehrtz, A. Reggel, C. Braüchle, “Photochemistry of tertiary nitrosoalkanes in solid polymer matrices: a promising new class of organic materials for holographic recording with semiconductor lasers,” J. Am. Chem. Soc. 109, 6479–6486 (1987).
[CrossRef]

1986 (3)

J. Pinsl, M. Gehrtz, C. Braüchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, “New grating experiments in the study of irreversible photochemical reactions,” IEEE J. Quantum Electron. QE-22, 1476–1481 (1986).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, “Two-photon four-level hologram recording in poly-(alkyl-α-cyanoacrylates),” Appl. Phys. B 40, 77–84 (1986).
[CrossRef]

1983 (3)

F. W. Deeg, J. Pinsl, C. Braüchle, J. Voitländer, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79, 1229–1234 (1983).
[CrossRef]

C. Braüchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
[CrossRef]

D. M. Burland, “Applications of holography in the investigation of photochemical reactions,” Acc. Chem. Res. 16, 218–224 (1983).
[CrossRef]

1982 (1)

D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
[CrossRef]

1981 (1)

C. Braüchle, D. M. Burland, G. C. Bjorklund, “Study of the photolysis of dimethyl-s-tetrazine using a holographic technique,” J. Am. Chem. Soc. 103, 2516–2519 (1981).

1980 (1)

D. M. Burland, G. C. Bjorklund, D. C. Alvarez, “Use of holography to investigate photochemical reactions,” J. Am. Chem. Soc. 102, 7119–7120 (1980).
[CrossRef]

1979 (1)

T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979).
[CrossRef]

1976 (1)

R. H. Kayser, R. H. Young, “The photoreduction of methylene blue and amines-I. a flash photolysis study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
[CrossRef]

1973 (1)

S. G. Cohen, A. Parola, G. H. Parsons, “Photoreduction by amines,” Chem. Rev. 73, 141–161 (1973).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1968 (1)

G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
[CrossRef]

1963 (1)

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

1944 (1)

K. Levenberg, “A method for the solution of certain problems of least squares,” Q. Appl. Math. 2, 164–168 (1944).

Alvarez, D. C.

D. M. Burland, G. C. Bjorklund, D. C. Alvarez, “Use of holography to investigate photochemical reactions,” J. Am. Chem. Soc. 102, 7119–7120 (1980).
[CrossRef]

Arrathoon, R.

R. Arrathoon, “Historical perspectives: optical crossbars and optical computing,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 1–11 (1987).

Bashaw, M.

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Beléndez, A.

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

L. Carretero, S. Blaya, A. Fimia, A. Beléndez, R. F. Madrigal, “Real time transmittance function in photopolymers of acrylamide composition: noise gratings,” in Holographic and Diffractive Techniques, G. J. Dausmann, ed., Proc. SPIE2951, 20–24 (1996).
[CrossRef]

Bernal, M.-P.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Bjorklund, G. C.

C. Braüchle, D. M. Burland, G. C. Bjorklund, “Study of the photolysis of dimethyl-s-tetrazine using a holographic technique,” J. Am. Chem. Soc. 103, 2516–2519 (1981).

D. M. Burland, G. C. Bjorklund, D. C. Alvarez, “Use of holography to investigate photochemical reactions,” J. Am. Chem. Soc. 102, 7119–7120 (1980).
[CrossRef]

Blaya, S.

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

L. Carretero, S. Blaya, A. Fimia, A. Beléndez, R. F. Madrigal, “Real time transmittance function in photopolymers of acrylamide composition: noise gratings,” in Holographic and Diffractive Techniques, G. J. Dausmann, ed., Proc. SPIE2951, 20–24 (1996).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1987), pp. 40–41.

Braüchle, C.

J. Pinsl, M. Gehrtz, A. Reggel, C. Braüchle, “Photochemistry of tertiary nitrosoalkanes in solid polymer matrices: a promising new class of organic materials for holographic recording with semiconductor lasers,” J. Am. Chem. Soc. 109, 6479–6486 (1987).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, “New grating experiments in the study of irreversible photochemical reactions,” IEEE J. Quantum Electron. QE-22, 1476–1481 (1986).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, “Two-photon four-level hologram recording in poly-(alkyl-α-cyanoacrylates),” Appl. Phys. B 40, 77–84 (1986).
[CrossRef]

J. Pinsl, M. Gehrtz, C. Braüchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, J. Voitländer, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79, 1229–1234 (1983).
[CrossRef]

C. Braüchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
[CrossRef]

D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
[CrossRef]

C. Braüchle, D. M. Burland, G. C. Bjorklund, “Study of the photolysis of dimethyl-s-tetrazine using a holographic technique,” J. Am. Chem. Soc. 103, 2516–2519 (1981).

Burland, D. M.

C. Braüchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
[CrossRef]

D. M. Burland, “Applications of holography in the investigation of photochemical reactions,” Acc. Chem. Res. 16, 218–224 (1983).
[CrossRef]

D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
[CrossRef]

C. Braüchle, D. M. Burland, G. C. Bjorklund, “Study of the photolysis of dimethyl-s-tetrazine using a holographic technique,” J. Am. Chem. Soc. 103, 2516–2519 (1981).

D. M. Burland, G. C. Bjorklund, D. C. Alvarez, “Use of holography to investigate photochemical reactions,” J. Am. Chem. Soc. 102, 7119–7120 (1980).
[CrossRef]

Burr, G. W.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Carre, C.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Carretero, L.

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

L. Carretero, S. Blaya, A. Fimia, A. Beléndez, R. F. Madrigal, “Real time transmittance function in photopolymers of acrylamide composition: noise gratings,” in Holographic and Diffractive Techniques, G. J. Dausmann, ed., Proc. SPIE2951, 20–24 (1996).
[CrossRef]

Changkakoti, R.

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” in Processes in Photorefractive Polymers, V. V. Krongauz, A. D. Trifunac, eds. (Chapman & Hall, London, 1995, pp. 307–367.

Cohen, S. G.

S. G. Cohen, A. Parola, G. H. Parsons, “Photoreduction by amines,” Chem. Rev. 73, 141–161 (1973).
[CrossRef]

Conde, M.

R. Sastre, M. Conde, J. L. Mateo, “Photoinitiated bulk polymerization of lauryl acrylate by N-acetyl-4-nitro-1-naphthylamine in the presence of N,N′-dimethylaniline,” J. Photochem. Photobiol. A. Chem. 44, 111–122 (1988).
[CrossRef]

Coufal, H.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Deeg, F. W.

F. W. Deeg, J. Pinsl, C. Braüchle, “Two-photon four-level hologram recording in poly-(alkyl-α-cyanoacrylates),” Appl. Phys. B 40, 77–84 (1986).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, “New grating experiments in the study of irreversible photochemical reactions,” IEEE J. Quantum Electron. QE-22, 1476–1481 (1986).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, J. Voitländer, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79, 1229–1234 (1983).
[CrossRef]

Fimia, A.

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

L. Carretero, S. Blaya, A. Fimia, A. Beléndez, R. F. Madrigal, “Real time transmittance function in photopolymers of acrylamide composition: noise gratings,” in Holographic and Diffractive Techniques, G. J. Dausmann, ed., Proc. SPIE2951, 20–24 (1996).
[CrossRef]

Fouassier, J. P.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Gehrtz, M.

J. Pinsl, M. Gehrtz, A. Reggel, C. Braüchle, “Photochemistry of tertiary nitrosoalkanes in solid polymer matrices: a promising new class of organic materials for holographic recording with semiconductor lasers,” J. Am. Chem. Soc. 109, 6479–6486 (1987).
[CrossRef]

J. Pinsl, M. Gehrtz, C. Braüchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

Grygier, R. K.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Haarer, D.

S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
[CrossRef]

Hesselink, L.

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Hoffnagle, J. A.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Jefferson, C. M.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Jenkins, B. K.

Karpov, G. M.

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, T. A. Sarbaev, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency,” Opt. Spectrosc. 82, 131–137 (1997).

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: I. General system of equations,” Opt. Specrosc. 81, 947–952 (1996) and the references cited therein.

Kayser, R. H.

R. H. Kayser, R. H. Young, “The photoreduction of methylene blue and amines-I. a flash photolysis study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kubota, T.

T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979).
[CrossRef]

Lee, W. H.

W. H. Lee, “Holographic optical head for compact disk applications,” Opt. Eng. 28, 650–653 (1989).
[CrossRef]

Lessard, R. A.

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” in Processes in Photorefractive Polymers, V. V. Krongauz, A. D. Trifunac, eds. (Chapman & Hall, London, 1995, pp. 307–367.

Levenberg, K.

K. Levenberg, “A method for the solution of certain problems of least squares,” Q. Appl. Math. 2, 164–168 (1944).

Lougnot, D. J.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Lyubimova, T.

T. Lyubimova, P. G. Righetti, “On the kinetics of photopolymerization: a theoretical study,” Electrophoresis 14, 191–201 (1993).
[CrossRef] [PubMed]

Macfarlane, R. M.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Madrigal, R. F.

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998).
[CrossRef]

L. Carretero, S. Blaya, A. Fimia, A. Beléndez, R. F. Madrigal, “Real time transmittance function in photopolymers of acrylamide composition: noise gratings,” in Holographic and Diffractive Techniques, G. J. Dausmann, ed., Proc. SPIE2951, 20–24 (1996).
[CrossRef]

Mallavia, R.

Manivannan, G.

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” in Processes in Photorefractive Polymers, V. V. Krongauz, A. D. Trifunac, eds. (Chapman & Hall, London, 1995, pp. 307–367.

Marquardt, D.

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Mateo, J. L.

R. Sastre, M. Conde, J. L. Mateo, “Photoinitiated bulk polymerization of lauryl acrylate by N-acetyl-4-nitro-1-naphthylamine in the presence of N,N′-dimethylaniline,” J. Photochem. Photobiol. A. Chem. 44, 111–122 (1988).
[CrossRef]

Obukhovskii, T. N.

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, T. A. Sarbaev, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency,” Opt. Spectrosc. 82, 131–137 (1997).

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: I. General system of equations,” Opt. Specrosc. 81, 947–952 (1996) and the references cited therein.

Odian, G.

G. Odian, Principles of Polymerization (Wiley, New York, 1993), pp. 198–331.

Oster, G.

G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
[CrossRef]

Parola, A.

S. G. Cohen, A. Parola, G. H. Parsons, “Photoreduction by amines,” Chem. Rev. 73, 141–161 (1973).
[CrossRef]

Parsons, G. H.

S. G. Cohen, A. Parola, G. H. Parsons, “Photoreduction by amines,” Chem. Rev. 73, 141–161 (1973).
[CrossRef]

Piazolla, S.

Pinsl, J.

J. Pinsl, M. Gehrtz, A. Reggel, C. Braüchle, “Photochemistry of tertiary nitrosoalkanes in solid polymer matrices: a promising new class of organic materials for holographic recording with semiconductor lasers,” J. Am. Chem. Soc. 109, 6479–6486 (1987).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, “New grating experiments in the study of irreversible photochemical reactions,” IEEE J. Quantum Electron. QE-22, 1476–1481 (1986).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, “Two-photon four-level hologram recording in poly-(alkyl-α-cyanoacrylates),” Appl. Phys. B 40, 77–84 (1986).
[CrossRef]

J. Pinsl, M. Gehrtz, C. Braüchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, J. Voitländer, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79, 1229–1234 (1983).
[CrossRef]

Reggel, A.

J. Pinsl, M. Gehrtz, A. Reggel, C. Braüchle, “Photochemistry of tertiary nitrosoalkanes in solid polymer matrices: a promising new class of organic materials for holographic recording with semiconductor lasers,” J. Am. Chem. Soc. 109, 6479–6486 (1987).
[CrossRef]

Righetti, P. G.

T. Lyubimova, P. G. Righetti, “On the kinetics of photopolymerization: a theoretical study,” Electrophoresis 14, 191–201 (1993).
[CrossRef] [PubMed]

Sarbaev, T. A.

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, T. A. Sarbaev, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency,” Opt. Spectrosc. 82, 131–137 (1997).

Sastre, R.

R. Sastre, M. Conde, J. L. Mateo, “Photoinitiated bulk polymerization of lauryl acrylate by N-acetyl-4-nitro-1-naphthylamine in the presence of N,N′-dimethylaniline,” J. Photochem. Photobiol. A. Chem. 44, 111–122 (1988).
[CrossRef]

Schloter, S.

S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
[CrossRef]

Shelby, R. M.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Sincerbox, G. T.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

G. T. Sincerbox, Laser Beam Theory (Marcel Dekker, New York, 1985), pp. 1–62.

Smirnova, T. N.

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, T. A. Sarbaev, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency,” Opt. Spectrosc. 82, 131–137 (1997).

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: I. General system of equations,” Opt. Specrosc. 81, 947–952 (1996) and the references cited therein.

Smith, H.

H. Smith, Principles of Holography, (Wiley, New York, 1975), pp. 112–122.

Turro, N. J.

N. J. Turro, Modern Molecular Photochemistry (University Science, Mill Valley, Calif., 1991), pp. 76–152.

Voitländer, J.

F. W. Deeg, J. Pinsl, C. Braüchle, J. Voitländer, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79, 1229–1234 (1983).
[CrossRef]

Wittmann, G.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1987), pp. 40–41.

Yang, N.

G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
[CrossRef]

Young, R. H.

R. H. Kayser, R. H. Young, “The photoreduction of methylene blue and amines-I. a flash photolysis study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
[CrossRef]

Acc. Chem. Res. (1)

D. M. Burland, “Applications of holography in the investigation of photochemical reactions,” Acc. Chem. Res. 16, 218–224 (1983).
[CrossRef]

Adv. Mater. (1)

S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

C. Braüchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

F. W. Deeg, J. Pinsl, C. Braüchle, “Two-photon four-level hologram recording in poly-(alkyl-α-cyanoacrylates),” Appl. Phys. B 40, 77–84 (1986).
[CrossRef]

Bell. Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Chem. Rev. (2)

S. G. Cohen, A. Parola, G. H. Parsons, “Photoreduction by amines,” Chem. Rev. 73, 141–161 (1973).
[CrossRef]

G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
[CrossRef]

Electrophoresis (1)

T. Lyubimova, P. G. Righetti, “On the kinetics of photopolymerization: a theoretical study,” Electrophoresis 14, 191–201 (1993).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

F. W. Deeg, J. Pinsl, C. Braüchle, “New grating experiments in the study of irreversible photochemical reactions,” IEEE J. Quantum Electron. QE-22, 1476–1481 (1986).
[CrossRef]

J. Am. Chem. Soc. (3)

C. Braüchle, D. M. Burland, G. C. Bjorklund, “Study of the photolysis of dimethyl-s-tetrazine using a holographic technique,” J. Am. Chem. Soc. 103, 2516–2519 (1981).

D. M. Burland, G. C. Bjorklund, D. C. Alvarez, “Use of holography to investigate photochemical reactions,” J. Am. Chem. Soc. 102, 7119–7120 (1980).
[CrossRef]

J. Pinsl, M. Gehrtz, A. Reggel, C. Braüchle, “Photochemistry of tertiary nitrosoalkanes in solid polymer matrices: a promising new class of organic materials for holographic recording with semiconductor lasers,” J. Am. Chem. Soc. 109, 6479–6486 (1987).
[CrossRef]

J. Chem. Phys. (2)

D. M. Burland, C. Braüchle, “The use of holography to investigate complex photochemical reactions,” J. Chem. Phys. 76, 4502–4512 (1982).
[CrossRef]

F. W. Deeg, J. Pinsl, C. Braüchle, J. Voitländer, “The evaluation of photochemical quantum yields by holography,” J. Chem. Phys. 79, 1229–1234 (1983).
[CrossRef]

J. Photochem. Photobiol. A. Chem. (1)

R. Sastre, M. Conde, J. L. Mateo, “Photoinitiated bulk polymerization of lauryl acrylate by N-acetyl-4-nitro-1-naphthylamine in the presence of N,N′-dimethylaniline,” J. Photochem. Photobiol. A. Chem. 44, 111–122 (1988).
[CrossRef]

J. Phys. Chem. (1)

J. Pinsl, M. Gehrtz, C. Braüchle, “Phase-modulated holography: a new technique for investigation of solid-state photochemistry and hologram formation mechanism,” J. Phys. Chem. 90, 6754–6756 (1986).
[CrossRef]

Macromolecules (1)

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Mater. Res. Soc. Bull. (1)

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, G. Wittmann, “Holographic-data-storage materials,” Mater. Res. Soc. Bull. 9, 50–60 (1996).

Opt. Acta (1)

T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979).
[CrossRef]

Opt. Eng. (1)

W. H. Lee, “Holographic optical head for compact disk applications,” Opt. Eng. 28, 650–653 (1989).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Opt. Specrosc. (1)

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: I. General system of equations,” Opt. Specrosc. 81, 947–952 (1996) and the references cited therein.

Opt. Spectrosc. (1)

G. M. Karpov, T. N. Obukhovskii, T. N. Smirnova, T. A. Sarbaev, “Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency,” Opt. Spectrosc. 82, 131–137 (1997).

Photochem. Photobiol. (1)

R. H. Kayser, R. H. Young, “The photoreduction of methylene blue and amines-I. a flash photolysis study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
[CrossRef]

Q. Appl. Math. (1)

K. Levenberg, “A method for the solution of certain problems of least squares,” Q. Appl. Math. 2, 164–168 (1944).

SIAM J. Appl. Math. (1)

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Other (9)

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1987), pp. 40–41.

L. Carretero, S. Blaya, A. Fimia, A. Beléndez, R. F. Madrigal, “Real time transmittance function in photopolymers of acrylamide composition: noise gratings,” in Holographic and Diffractive Techniques, G. J. Dausmann, ed., Proc. SPIE2951, 20–24 (1996).
[CrossRef]

N. J. Turro, Modern Molecular Photochemistry (University Science, Mill Valley, Calif., 1991), pp. 76–152.

H. Smith, Principles of Holography, (Wiley, New York, 1975), pp. 112–122.

R. A. Lessard, R. Changkakoti, G. Manivannan, “Holographic recording materials,” in Processes in Photorefractive Polymers, V. V. Krongauz, A. D. Trifunac, eds. (Chapman & Hall, London, 1995, pp. 307–367.

H. J. Caulfield, ed., Handbook of Optical Holography (Academic, London, 1979), pp. 415–462.

G. T. Sincerbox, Laser Beam Theory (Marcel Dekker, New York, 1985), pp. 1–62.

R. Arrathoon, “Historical perspectives: optical crossbars and optical computing,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 1–11 (1987).

G. Odian, Principles of Polymerization (Wiley, New York, 1993), pp. 198–331.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the setup for the recording of holographic growth with time curves: BS, beam splitter; SF, spatial filter; D1 and D2, detectors; L, lens; Di, diaphragm; M1–M5, mirrors; G, glass; H, holographic plate; PC, personal computer.

Fig. 2
Fig. 2

Experimental setup for obtaining holographic transmittance curves: SF, spatial filter; D, detector; L, lens; Di, diaphragm; M1 and M2, mirrors; H, plate; PC, personal computer.

Fig. 3
Fig. 3

Schematic representation of the holographic recording and reading with different wavelengths used, where d is the thickness of the sample and ψ is the fringe spacing.

Fig. 4
Fig. 4

Scheme of the mechanism proposed for photopolymerization: DYE, photoinitiator; DYE*, excited photoinitiator; DYE, radical photoinitiator derivative; DYE, anion derivative of the photoinitiator; LDYE, leuco-dye; Am, amine; Am+●, cation radical; Am, radical derived from amine; M, monomer; P, polymer; Mi, monomer radical with i subunits; hν, energy of an incident photon; k, reaction constant.

Fig. 5
Fig. 5

Experimental and theoretical normalized transmission results, where the symbols are the experimental data and the curve is theoretically fitted.

Fig. 6
Fig. 6

(a) Curve of the angular response of fitted diffraction efficiency and the corresponding experimental data. (b) Fitted curve of the growth in diffraction efficiency when the thickness is 22 µm. The symbols are the experimental data, normalized to unity, and the curve is theoretically fitted.

Fig. 7
Fig. 7

(a) Curve of the angular response of fitted diffraction efficiency and the corresponding experimental data. (b) Fitted curve of the growth in diffraction efficiency when the thickness is 36 µm. The symbols are the experimental data, normalized to unity, and the curve is theoretically fitted.

Fig. 8
Fig. 8

Conversion versus time, obtained from fitted parameters.

Tables (1)

Tables Icon

Table 1 Values of the Parameters Obtained for the Nonlinear Fit of the Curves of Temporal Variation and Angular Response of Diffraction Efficiency

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

λ=2ψ sin θ,
nx, t=n0+n1tcos2πxψ,
ηt=IDI0=sin2πn1dλ cos θ+sinh2a1d2 cos θexp-2a0dcos θ,
ηt=IDI0=Γ sin2πn1tdλ cos θ,
dDYEdt=-ϕIatd,
-dMdt=ϕIatd+ξM2,
Iat=I0(1-exp-DYEtd).
Iat=I0Λ exp-ϕI0t1+Λ exp-ϕI0t,
Λ=expdDYE0-1,
ϕα1ξ exp-α2t1+Λ exp-α2tϕα1ξ exp-α2t1+Λ,
α1=I0Λ,
α2=ϕI0.
ξM=1zdzdt,
x=exp-α2t,
B=ϕα1ξ1+Λα22.
Mt=α2Bξ expα2tB exp-α2t1/2C1J12B exp-α2t1/2+C2Y12B exp-α2t1/2C1J02B exp-α2t1/2+C2Y02B exp-α2t1/2,
dntdt=-βdMdt,
n1t=δXt.
n1t=δ M0-α2Bξ expα2tB exp-α2t1/2C1J12B exp-α2t1/2+C2Y12B exp-α2t1/2C1J02B exp-α2t1/2+C2Y02B exp-α2t1/2M0.
Tt=TfTsexpϕI0texpϕI0t+(expdDYE0-1),
ηt=tmax=Γ sin2πn0θ sin2θBdλ cosθB2+πn1t=tmaxdλ cosθB21/21+n0θ sin2θBn1t=tmax2,
n1t=ωn1t=tmaxXt.

Metrics