Abstract

The Paris area is strongly urbanized and is exposed to atmospheric pollution events. To understand the chemical and physical processes that are taking place in this area it is necessary to describe correctly the atmospheric boundary-layer (ABL) dynamics and the ABL height evolution. During the winter of 1994–1995, within the framework of the Etude de la Couche Limite Atmosphérique en Agglomération Parisienne (ECLAP) experiment, the vertical structure of the ABL over Paris and its immediate suburbs was extensively documented by means of lidar measurements. We present methods suited for precise determination of the ABL structure’s temporal evolution in a dynamic environment as complex as the Paris area. The purpose is to identify a method that can be used on a large set of lidar data. We compare commonly used methods that permit ABL height retrievals from backscatter lidar signals under different meteorological conditions. Incorrect tracking of the ABL depth’s diurnal cycle caused by limitations in the methods is analyzed. The study uses four days of the ECLAP experiment characterized by different meteorological and synoptic conditions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Gryning, A. M. M. Holtslag, J. S. Irwin, B. Sivertsen, “Applied dispersion modelling based on meteorological scaling parameters,” Atmos. Environ. 21, 79–89 (1987).
    [CrossRef]
  2. K. E. Kunkel, E. W. Eloranta, S. T. Shipley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
    [CrossRef]
  3. R. B. Stull, E. W. Eloranta, “Boundary Layer Experiment 1983,” Bull. Am. Meteorol. Soc. 65, 450–456 (1984).
    [CrossRef]
  4. R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parametrized entrainment models of mixed layer growth rate,” J. Climate Appl. Meteorol. 23, 247–266 (1984).
    [CrossRef]
  5. S. H. Melfi, J. D. Sphinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Climate Appl. Meteorol. 24, 806–821 (1985).
    [CrossRef]
  6. R. Boers, E. W. Eloranta, “Lidar measurements of the atmospheric entrainment zone and potential temperature jump across the top of the mixed layer,” Boundary-Layer Meteorol. 34, 357–375 (1986).
    [CrossRef]
  7. R. B. Stull, “A convective transport theory for surface fluxes,” J. Atmos. Sci. 51, 3–22 (1994).
    [CrossRef]
  8. C. Flamant, J. Pelon, “Boundary layer structure over the Mediterranean during a Tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
    [CrossRef]
  9. C. Flamant, J. Pelon, P. H. Flamant, P. Durand, “Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
    [CrossRef]
  10. E. Dupont, J. Pelon, C. Flamant, “Study of the moist convective boundary layer structure by backscatter lidar,” Boundary-Layer Meteorol. 69, 1–25 (1994).
    [CrossRef]
  11. W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
    [CrossRef]
  12. E. Dupont, “Etude méthodologique et expérimentale de la couche limite atmosphérique par télédétection laser,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1991).
  13. A. K. Piironen, E. W. Eloranta, “Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25,569–25,576 (1995).
    [CrossRef]
  14. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
    [CrossRef]
  15. E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999).
    [CrossRef]
  16. L. Menut, “Etude expérimentale et théorique de la couche limite atmosphérique en agglomération Parisienne,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1997).
  17. J. W. Deardorff, G. E. Willis, B. H. Stockton, “Laboratory studies of the entrainment zone of a convectively mixed layer,” J. Fluid Mech. 100, 41–64 (1980).
    [CrossRef]
  18. R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
    [CrossRef]
  19. C. Werner, “Lidar measurements of the atmospheric aerosol as a function of relative humidity,” Opto-Electron. 4, 125–132 (1972).
    [CrossRef]
  20. T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of the entrainment into thermals and mixed layers,” J. Climate Appl. Meteorol. 26, 774–788 (1977).
    [CrossRef]
  21. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht; The Netherlands, 1988).
    [CrossRef]
  22. A. M. M. Holtslag, D. DeBruijn, C. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Mon. Weather Rev. 118, 1561–1575 (1990).
    [CrossRef]
  23. J. E. Pleim, A. Xiu, “Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models,” J. Appl. Meteorol. 34, 16–32 (1988).
    [CrossRef]
  24. D. H. P. Vogelezang, A. A. M. Holtslag, “Evaluation and model impacts of alternative boundary-layer height formulations,” Boundary-Layer Meteorol. 81, 245–269 (1996).
    [CrossRef]
  25. D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
    [CrossRef]

1999

E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999).
[CrossRef]

1997

C. Flamant, J. Pelon, P. H. Flamant, P. Durand, “Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

1996

C. Flamant, J. Pelon, “Boundary layer structure over the Mediterranean during a Tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
[CrossRef]

D. H. P. Vogelezang, A. A. M. Holtslag, “Evaluation and model impacts of alternative boundary-layer height formulations,” Boundary-Layer Meteorol. 81, 245–269 (1996).
[CrossRef]

1995

A. K. Piironen, E. W. Eloranta, “Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25,569–25,576 (1995).
[CrossRef]

1994

E. Dupont, J. Pelon, C. Flamant, “Study of the moist convective boundary layer structure by backscatter lidar,” Boundary-Layer Meteorol. 69, 1–25 (1994).
[CrossRef]

R. B. Stull, “A convective transport theory for surface fluxes,” J. Atmos. Sci. 51, 3–22 (1994).
[CrossRef]

D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
[CrossRef]

1993

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

1990

A. M. M. Holtslag, D. DeBruijn, C. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Mon. Weather Rev. 118, 1561–1575 (1990).
[CrossRef]

1988

J. E. Pleim, A. Xiu, “Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models,” J. Appl. Meteorol. 34, 16–32 (1988).
[CrossRef]

1987

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
[CrossRef]

S. E. Gryning, A. M. M. Holtslag, J. S. Irwin, B. Sivertsen, “Applied dispersion modelling based on meteorological scaling parameters,” Atmos. Environ. 21, 79–89 (1987).
[CrossRef]

1986

R. Boers, E. W. Eloranta, “Lidar measurements of the atmospheric entrainment zone and potential temperature jump across the top of the mixed layer,” Boundary-Layer Meteorol. 34, 357–375 (1986).
[CrossRef]

W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

1985

S. H. Melfi, J. D. Sphinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Climate Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

1984

R. B. Stull, E. W. Eloranta, “Boundary Layer Experiment 1983,” Bull. Am. Meteorol. Soc. 65, 450–456 (1984).
[CrossRef]

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parametrized entrainment models of mixed layer growth rate,” J. Climate Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

1980

J. W. Deardorff, G. E. Willis, B. H. Stockton, “Laboratory studies of the entrainment zone of a convectively mixed layer,” J. Fluid Mech. 100, 41–64 (1980).
[CrossRef]

1977

K. E. Kunkel, E. W. Eloranta, S. T. Shipley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of the entrainment into thermals and mixed layers,” J. Climate Appl. Meteorol. 26, 774–788 (1977).
[CrossRef]

1972

C. Werner, “Lidar measurements of the atmospheric aerosol as a function of relative humidity,” Opto-Electron. 4, 125–132 (1972).
[CrossRef]

Boers, R.

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
[CrossRef]

R. Boers, E. W. Eloranta, “Lidar measurements of the atmospheric entrainment zone and potential temperature jump across the top of the mixed layer,” Boundary-Layer Meteorol. 34, 357–375 (1986).
[CrossRef]

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parametrized entrainment models of mixed layer growth rate,” J. Climate Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

Carissimo, B.

E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999).
[CrossRef]

Chou, S.-H.

S. H. Melfi, J. D. Sphinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Climate Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Cooper, D. I.

D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
[CrossRef]

Coulter, R. L.

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parametrized entrainment models of mixed layer growth rate,” J. Climate Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

Crum, T. D.

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of the entrainment into thermals and mixed layers,” J. Climate Appl. Meteorol. 26, 774–788 (1977).
[CrossRef]

Deardorff, J. W.

J. W. Deardorff, G. E. Willis, B. H. Stockton, “Laboratory studies of the entrainment zone of a convectively mixed layer,” J. Fluid Mech. 100, 41–64 (1980).
[CrossRef]

DeBruijn, D.

A. M. M. Holtslag, D. DeBruijn, C. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Mon. Weather Rev. 118, 1561–1575 (1990).
[CrossRef]

Dupont, E.

E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999).
[CrossRef]

E. Dupont, J. Pelon, C. Flamant, “Study of the moist convective boundary layer structure by backscatter lidar,” Boundary-Layer Meteorol. 69, 1–25 (1994).
[CrossRef]

E. Dupont, “Etude méthodologique et expérimentale de la couche limite atmosphérique par télédétection laser,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1991).

Durand, P.

C. Flamant, J. Pelon, P. H. Flamant, P. Durand, “Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

Eichinger, W. E.

D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
[CrossRef]

Eloranta, E.

W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

Eloranta, E. W.

A. K. Piironen, E. W. Eloranta, “Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25,569–25,576 (1995).
[CrossRef]

R. Boers, E. W. Eloranta, “Lidar measurements of the atmospheric entrainment zone and potential temperature jump across the top of the mixed layer,” Boundary-Layer Meteorol. 34, 357–375 (1986).
[CrossRef]

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parametrized entrainment models of mixed layer growth rate,” J. Climate Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

R. B. Stull, E. W. Eloranta, “Boundary Layer Experiment 1983,” Bull. Am. Meteorol. Soc. 65, 450–456 (1984).
[CrossRef]

K. E. Kunkel, E. W. Eloranta, S. T. Shipley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of the entrainment into thermals and mixed layers,” J. Climate Appl. Meteorol. 26, 774–788 (1977).
[CrossRef]

Flamant, C.

C. Flamant, J. Pelon, P. H. Flamant, P. Durand, “Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

C. Flamant, J. Pelon, “Boundary layer structure over the Mediterranean during a Tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
[CrossRef]

E. Dupont, J. Pelon, C. Flamant, “Study of the moist convective boundary layer structure by backscatter lidar,” Boundary-Layer Meteorol. 69, 1–25 (1994).
[CrossRef]

Flamant, P. H.

E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, P. Durand, “Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

Gryning, S. E.

S. E. Gryning, A. M. M. Holtslag, J. S. Irwin, B. Sivertsen, “Applied dispersion modelling based on meteorological scaling parameters,” Atmos. Environ. 21, 79–89 (1987).
[CrossRef]

Holtslag, A. A. M.

D. H. P. Vogelezang, A. A. M. Holtslag, “Evaluation and model impacts of alternative boundary-layer height formulations,” Boundary-Layer Meteorol. 81, 245–269 (1996).
[CrossRef]

Holtslag, A. M. M.

A. M. M. Holtslag, D. DeBruijn, C. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Mon. Weather Rev. 118, 1561–1575 (1990).
[CrossRef]

S. E. Gryning, A. M. M. Holtslag, J. S. Irwin, B. Sivertsen, “Applied dispersion modelling based on meteorological scaling parameters,” Atmos. Environ. 21, 79–89 (1987).
[CrossRef]

Hooper, W. P.

W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

Irwin, J. S.

S. E. Gryning, A. M. M. Holtslag, J. S. Irwin, B. Sivertsen, “Applied dispersion modelling based on meteorological scaling parameters,” Atmos. Environ. 21, 79–89 (1987).
[CrossRef]

Kunkel, K. E.

K. E. Kunkel, E. W. Eloranta, S. T. Shipley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

Melfi, S. H.

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
[CrossRef]

S. H. Melfi, J. D. Sphinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Climate Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Menut, L.

E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999).
[CrossRef]

L. Menut, “Etude expérimentale et théorique de la couche limite atmosphérique en agglomération Parisienne,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1997).

Palm, S. P.

S. H. Melfi, J. D. Sphinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Climate Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Pan, C.

A. M. M. Holtslag, D. DeBruijn, C. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Mon. Weather Rev. 118, 1561–1575 (1990).
[CrossRef]

Pelon, J.

C. Flamant, J. Pelon, P. H. Flamant, P. Durand, “Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

C. Flamant, J. Pelon, “Boundary layer structure over the Mediterranean during a Tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
[CrossRef]

E. Dupont, J. Pelon, C. Flamant, “Study of the moist convective boundary layer structure by backscatter lidar,” Boundary-Layer Meteorol. 69, 1–25 (1994).
[CrossRef]

Pelon, L.

E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999).
[CrossRef]

Piironen, A. K.

A. K. Piironen, E. W. Eloranta, “Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25,569–25,576 (1995).
[CrossRef]

Pleim, J. E.

J. E. Pleim, A. Xiu, “Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models,” J. Appl. Meteorol. 34, 16–32 (1988).
[CrossRef]

Shipley, S. T.

K. E. Kunkel, E. W. Eloranta, S. T. Shipley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

Sivertsen, B.

S. E. Gryning, A. M. M. Holtslag, J. S. Irwin, B. Sivertsen, “Applied dispersion modelling based on meteorological scaling parameters,” Atmos. Environ. 21, 79–89 (1987).
[CrossRef]

Sphinhirne, J. D.

S. H. Melfi, J. D. Sphinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Climate Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Spinhirne, J. D.

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

Stockton, B. H.

J. W. Deardorff, G. E. Willis, B. H. Stockton, “Laboratory studies of the entrainment zone of a convectively mixed layer,” J. Fluid Mech. 100, 41–64 (1980).
[CrossRef]

Stull, R. B.

R. B. Stull, “A convective transport theory for surface fluxes,” J. Atmos. Sci. 51, 3–22 (1994).
[CrossRef]

R. B. Stull, E. W. Eloranta, “Boundary Layer Experiment 1983,” Bull. Am. Meteorol. Soc. 65, 450–456 (1984).
[CrossRef]

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of the entrainment into thermals and mixed layers,” J. Climate Appl. Meteorol. 26, 774–788 (1977).
[CrossRef]

R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht; The Netherlands, 1988).
[CrossRef]

Vogelezang, D. H. P.

D. H. P. Vogelezang, A. A. M. Holtslag, “Evaluation and model impacts of alternative boundary-layer height formulations,” Boundary-Layer Meteorol. 81, 245–269 (1996).
[CrossRef]

Werner, C.

C. Werner, “Lidar measurements of the atmospheric aerosol as a function of relative humidity,” Opto-Electron. 4, 125–132 (1972).
[CrossRef]

Willis, G. E.

J. W. Deardorff, G. E. Willis, B. H. Stockton, “Laboratory studies of the entrainment zone of a convectively mixed layer,” J. Fluid Mech. 100, 41–64 (1980).
[CrossRef]

Xiu, A.

J. E. Pleim, A. Xiu, “Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models,” J. Appl. Meteorol. 34, 16–32 (1988).
[CrossRef]

Atmos. Environ.

S. E. Gryning, A. M. M. Holtslag, J. S. Irwin, B. Sivertsen, “Applied dispersion modelling based on meteorological scaling parameters,” Atmos. Environ. 21, 79–89 (1987).
[CrossRef]

E. Dupont, L. Menut, B. Carissimo, L. Pelon, P. H. Flamant, “Observations of the atmospheric boundary layer in Paris and its rural suburbs: the ECLAP experiment,” Atmos. Environ. 33, 979–994 (1999).
[CrossRef]

Boundary-Layer Meteorol.

R. Boers, S. H. Melfi, “Cold-air outbreak during MASEX: lidar observations and boundary layer model test,” Boundary-Layer Meteorol. 39, 41–51 (1987).
[CrossRef]

R. Boers, E. W. Eloranta, “Lidar measurements of the atmospheric entrainment zone and potential temperature jump across the top of the mixed layer,” Boundary-Layer Meteorol. 34, 357–375 (1986).
[CrossRef]

C. Flamant, J. Pelon, P. H. Flamant, P. Durand, “Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247–284 (1997).
[CrossRef]

E. Dupont, J. Pelon, C. Flamant, “Study of the moist convective boundary layer structure by backscatter lidar,” Boundary-Layer Meteorol. 69, 1–25 (1994).
[CrossRef]

D. H. P. Vogelezang, A. A. M. Holtslag, “Evaluation and model impacts of alternative boundary-layer height formulations,” Boundary-Layer Meteorol. 81, 245–269 (1996).
[CrossRef]

Bull. Am. Meteorol. Soc.

R. B. Stull, E. W. Eloranta, “Boundary Layer Experiment 1983,” Bull. Am. Meteorol. Soc. 65, 450–456 (1984).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

J. Appl. Meteorol.

K. E. Kunkel, E. W. Eloranta, S. T. Shipley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
[CrossRef]

J. E. Pleim, A. Xiu, “Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models,” J. Appl. Meteorol. 34, 16–32 (1988).
[CrossRef]

J. Atmos. Sci.

R. B. Stull, “A convective transport theory for surface fluxes,” J. Atmos. Sci. 51, 3–22 (1994).
[CrossRef]

J. Climate Appl. Meteorol.

R. Boers, E. W. Eloranta, R. L. Coulter, “Lidar observations of mixed layer dynamics: tests of parametrized entrainment models of mixed layer growth rate,” J. Climate Appl. Meteorol. 23, 247–266 (1984).
[CrossRef]

S. H. Melfi, J. D. Sphinhirne, S.-H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Climate Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

W. P. Hooper, E. Eloranta, “Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon,” J. Climate Appl. Meteorol. 25, 990–1001 (1986).
[CrossRef]

T. D. Crum, R. B. Stull, E. W. Eloranta, “Coincident lidar and aircraft observations of the entrainment into thermals and mixed layers,” J. Climate Appl. Meteorol. 26, 774–788 (1977).
[CrossRef]

J. Fluid Mech.

J. W. Deardorff, G. E. Willis, B. H. Stockton, “Laboratory studies of the entrainment zone of a convectively mixed layer,” J. Fluid Mech. 100, 41–64 (1980).
[CrossRef]

J. Geophys. Res.

D. I. Cooper, W. E. Eichinger, “Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations,” J. Geophys. Res. 99, 22,937–22,948 (1994).
[CrossRef]

A. K. Piironen, E. W. Eloranta, “Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data,” J. Geophys. Res. 100, 25,569–25,576 (1995).
[CrossRef]

Mon. Weather Rev.

A. M. M. Holtslag, D. DeBruijn, C. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Mon. Weather Rev. 118, 1561–1575 (1990).
[CrossRef]

Opto-Electron.

C. Werner, “Lidar measurements of the atmospheric aerosol as a function of relative humidity,” Opto-Electron. 4, 125–132 (1972).
[CrossRef]

Q. J. R. Meteorol. Soc.

C. Flamant, J. Pelon, “Boundary layer structure over the Mediterranean during a Tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
[CrossRef]

Other

L. Menut, “Etude expérimentale et théorique de la couche limite atmosphérique en agglomération Parisienne,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1997).

E. Dupont, “Etude méthodologique et expérimentale de la couche limite atmosphérique par télédétection laser,” Ph.D. dissertation (Université Pierre et Marie Curie, Paris, 1991).

R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht; The Netherlands, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Time series of lidar RSCS over Paris on, top to bottom, M9, M10, M13, and M14.

Fig. 2
Fig. 2

Average RSCS profile (solid curve) recorded on M14 at 1200 GMT at Paris. The dashed and dashed–dotted curves are, respectively, profiles of the first and the second derivatives of the RSCS. h IPM is the ABL top height retrieved by the IPM.

Fig. 3
Fig. 3

Average RSCS profile (solid curve) recorded on M14 at 1200 GMT at Paris. The dashed and dashed–dotted curves are, respectively, the standard-deviation profile of the RSCS and the smoothed standard-deviation profile that results after the centroid has been applied to the data. h VCM is the ABL top height retrieved by the VCM.

Fig. 4
Fig. 4

Potential temperature sounding measured at Trappes on M14 at 1200 GMT. The value of the ABL top height inferred from the sounding is 360 m and should be compared with those of Figs. 2 and 3.

Fig. 5
Fig. 5

Comparisons of retrieved from soundings and from lidar profiles at Palaiseau. Triangles and circles represent results obtained with the IPM and the VCM, respectively.

Fig. 6
Fig. 6

Comparison of calculated by the VCM and the IPM on M13 at Paris and Palaiseau.

Fig. 7
Fig. 7

Histograms of differences between the values of determined with the IPM and the VCM for M9, M10, M13 and M14 (a) at Palaiseau and (b) at Paris as a function of three diurnal periods characterized by different thermal stratifications.

Fig. 8
Fig. 8

Average profiles of RSCS standard deviation (dashed curve) and second derivative (dashed–dotted curve) recorded on M10 at 1000 GMT at Paris.

Fig. 9
Fig. 9

Same as Fig. 8, except on M9 at 0935 GMT.

Fig. 10
Fig. 10

Same as Fig. 8, except on M10 at 1815 GMT and at Palaiseau.

Tables (3)

Tables Icon

Table 1 Lidar Characteristics in Paris and Palaiseaua

Tables Icon

Table 2 Times (GMT) of Soundings Used for Direct Comparison with Boundary-Layer Height Retrieved by Lidar

Tables Icon

Table 3 Summary of the Main Causes of Failure in ABL Top Detection

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

RSλ, r=Cr2 E0βmλ, r+βpλ, rT2λ, r+RS0,
RSCS=RS-RS0r2.
σRSCS=1Ni=1,NRSCSi-RSCS¯21/2,
Ribz=gz-z0θzθz-θz0uz2+vz2,

Metrics