Abstract

Vapor-phase measurements by linear Raman spectroscopy are performed in the vicinity of methanol droplets. Several types of interference by these droplets are identified and removed by appropriate filtering. This procedure, together with the phase-dependent spectral shift of the OH stretching vibration frequency, is proved to permit single-pulse linear Raman measurements of methanol vapor and nitrogen on a line with coexisting droplets. Laser-induced droplet breakdown is found to limit the applicable laser irradiance to approximately 2 GW/cm2 and is avoided by use of a flash-lamp-pumped dye laser with high energy (1–7 J) and long pulses (1.5 µs).

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization in fuel sprays,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1283–1290.
  2. R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
    [CrossRef]
  3. T. Heinze, T. Schmidt, D. Brüggemann, K.-F. Knoche, “Mixture formation in a spray observed by spontaneous Raman spectroscopy,” in Combusting Flow DiagnosticsD. F. G. Durão, M. V. Heitor, J. H. Whitelaw, P. O. Witze, eds., Vol. E 207 of NATO ASI Series in Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 469–480.
    [CrossRef]
  4. R. Vehring, G. Schweiger, “Raman scattering on liquid aerosol particles: concentration measurements on droplet chains,” J. Aerosol Sci. 22, S399–S402 (1991).
    [CrossRef]
  5. G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
    [CrossRef]
  6. G. Herzberg, Molecular Spectra and Molecular Structure II (Van Nostrand, New York, 1962), Chap. 5, p. 536.
  7. B. Mewes, G. Bauer, D. Brüggemann, “Vapor/liquid mass fraction measurements by linear Raman spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 184–186.
  8. R. G. Pinnick, P. Chýlek, M. Jarzembski, E. Creegan, G. Fernandez, J. D. Pendleton, A. Biswas, “Aerosol-induced laser breakdown thresholds: wavelength dependence,” Appl. Opt. 27, 987–996 (1988).
    [CrossRef] [PubMed]
  9. P. Chýlek, M. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of size and material of liquid spherical particles on laser-induced breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
    [CrossRef]
  10. R. Vehring, “Linear Raman spectroscopy on aqueous aerosols: influence of nonlinear effects on detection limits,” J. Aerosol Sci. 29, 65–79 (1998).
    [CrossRef]
  11. N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water,” J. Raman Spectrosc. 7, 161–167 (1978).
    [CrossRef]
  12. H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 123–166.
    [CrossRef]
  13. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 151–152.
  14. H.-B. Lin, A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133, 287–292 (1997).
    [CrossRef]

1998 (1)

R. Vehring, “Linear Raman spectroscopy on aqueous aerosols: influence of nonlinear effects on detection limits,” J. Aerosol Sci. 29, 65–79 (1998).
[CrossRef]

1997 (1)

H.-B. Lin, A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133, 287–292 (1997).
[CrossRef]

1995 (1)

R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
[CrossRef]

1991 (2)

R. Vehring, G. Schweiger, “Raman scattering on liquid aerosol particles: concentration measurements on droplet chains,” J. Aerosol Sci. 22, S399–S402 (1991).
[CrossRef]

G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
[CrossRef]

1988 (1)

1986 (1)

P. Chýlek, M. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of size and material of liquid spherical particles on laser-induced breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

1978 (1)

N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water,” J. Raman Spectrosc. 7, 161–167 (1978).
[CrossRef]

Abe, N.

N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water,” J. Raman Spectrosc. 7, 161–167 (1978).
[CrossRef]

Bauer, G.

B. Mewes, G. Bauer, D. Brüggemann, “Vapor/liquid mass fraction measurements by linear Raman spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 184–186.

Bazile, R.

R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
[CrossRef]

Biswas, A.

Brüggemann, D.

T. Heinze, T. Schmidt, D. Brüggemann, K.-F. Knoche, “Mixture formation in a spray observed by spontaneous Raman spectroscopy,” in Combusting Flow DiagnosticsD. F. G. Durão, M. V. Heitor, J. H. Whitelaw, P. O. Witze, eds., Vol. E 207 of NATO ASI Series in Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 469–480.
[CrossRef]

B. Mewes, G. Bauer, D. Brüggemann, “Vapor/liquid mass fraction measurements by linear Raman spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 184–186.

Campillo, A. J.

H.-B. Lin, A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133, 287–292 (1997).
[CrossRef]

Chou, N. Y.

P. Chýlek, M. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of size and material of liquid spherical particles on laser-induced breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

Chýlek, P.

R. G. Pinnick, P. Chýlek, M. Jarzembski, E. Creegan, G. Fernandez, J. D. Pendleton, A. Biswas, “Aerosol-induced laser breakdown thresholds: wavelength dependence,” Appl. Opt. 27, 987–996 (1988).
[CrossRef] [PubMed]

P. Chýlek, M. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of size and material of liquid spherical particles on laser-induced breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

Creegan, E.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 151–152.

Fernandez, G.

Heinze, T.

T. Heinze, T. Schmidt, D. Brüggemann, K.-F. Knoche, “Mixture formation in a spray observed by spontaneous Raman spectroscopy,” in Combusting Flow DiagnosticsD. F. G. Durão, M. V. Heitor, J. H. Whitelaw, P. O. Witze, eds., Vol. E 207 of NATO ASI Series in Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 469–480.
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure II (Van Nostrand, New York, 1962), Chap. 5, p. 536.

Ito, M.

N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water,” J. Raman Spectrosc. 7, 161–167 (1978).
[CrossRef]

Jarzembski, M.

R. G. Pinnick, P. Chýlek, M. Jarzembski, E. Creegan, G. Fernandez, J. D. Pendleton, A. Biswas, “Aerosol-induced laser breakdown thresholds: wavelength dependence,” Appl. Opt. 27, 987–996 (1988).
[CrossRef] [PubMed]

P. Chýlek, M. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of size and material of liquid spherical particles on laser-induced breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

Klöckner, H. W.

H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 123–166.
[CrossRef]

Knoche, K.-F.

T. Heinze, T. Schmidt, D. Brüggemann, K.-F. Knoche, “Mixture formation in a spray observed by spontaneous Raman spectroscopy,” in Combusting Flow DiagnosticsD. F. G. Durão, M. V. Heitor, J. H. Whitelaw, P. O. Witze, eds., Vol. E 207 of NATO ASI Series in Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 469–480.
[CrossRef]

Lin, H.-B.

H.-B. Lin, A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133, 287–292 (1997).
[CrossRef]

Melton, L. A.

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization in fuel sprays,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1283–1290.

Mewes, B.

B. Mewes, G. Bauer, D. Brüggemann, “Vapor/liquid mass fraction measurements by linear Raman spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 184–186.

Pendleton, J. D.

Pinnick, R. G.

R. G. Pinnick, P. Chýlek, M. Jarzembski, E. Creegan, G. Fernandez, J. D. Pendleton, A. Biswas, “Aerosol-induced laser breakdown thresholds: wavelength dependence,” Appl. Opt. 27, 987–996 (1988).
[CrossRef] [PubMed]

P. Chýlek, M. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of size and material of liquid spherical particles on laser-induced breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

Schmidt, T.

T. Heinze, T. Schmidt, D. Brüggemann, K.-F. Knoche, “Mixture formation in a spray observed by spontaneous Raman spectroscopy,” in Combusting Flow DiagnosticsD. F. G. Durão, M. V. Heitor, J. H. Whitelaw, P. O. Witze, eds., Vol. E 207 of NATO ASI Series in Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 469–480.
[CrossRef]

Schrötter, H. W.

H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 123–166.
[CrossRef]

Schweiger, G.

R. Vehring, G. Schweiger, “Raman scattering on liquid aerosol particles: concentration measurements on droplet chains,” J. Aerosol Sci. 22, S399–S402 (1991).
[CrossRef]

G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
[CrossRef]

Stepowski, D.

R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
[CrossRef]

Vehring, R.

R. Vehring, “Linear Raman spectroscopy on aqueous aerosols: influence of nonlinear effects on detection limits,” J. Aerosol Sci. 29, 65–79 (1998).
[CrossRef]

R. Vehring, G. Schweiger, “Raman scattering on liquid aerosol particles: concentration measurements on droplet chains,” J. Aerosol Sci. 22, S399–S402 (1991).
[CrossRef]

Verdieck, J. F.

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization in fuel sprays,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1283–1290.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Chýlek, M. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of size and material of liquid spherical particles on laser-induced breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

Exp. Fluids (1)

R. Bazile, D. Stepowski, “Measurements of vaporized and liquid fuel concentration fields in a burning spray jet of acetone using planar laser induced fluorescence,” Exp. Fluids 20, 1–9 (1995).
[CrossRef]

J. Aerosol Sci. (2)

R. Vehring, “Linear Raman spectroscopy on aqueous aerosols: influence of nonlinear effects on detection limits,” J. Aerosol Sci. 29, 65–79 (1998).
[CrossRef]

R. Vehring, G. Schweiger, “Raman scattering on liquid aerosol particles: concentration measurements on droplet chains,” J. Aerosol Sci. 22, S399–S402 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water,” J. Raman Spectrosc. 7, 161–167 (1978).
[CrossRef]

Opt. Commun. (1)

H.-B. Lin, A. J. Campillo, “Microcavity enhanced Raman gain,” Opt. Commun. 133, 287–292 (1997).
[CrossRef]

Other (6)

L. A. Melton, J. F. Verdieck, “Vapor/liquid visualization in fuel sprays,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1984), pp. 1283–1290.

T. Heinze, T. Schmidt, D. Brüggemann, K.-F. Knoche, “Mixture formation in a spray observed by spontaneous Raman spectroscopy,” in Combusting Flow DiagnosticsD. F. G. Durão, M. V. Heitor, J. H. Whitelaw, P. O. Witze, eds., Vol. E 207 of NATO ASI Series in Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 469–480.
[CrossRef]

H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 123–166.
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), pp. 151–152.

G. Herzberg, Molecular Spectra and Molecular Structure II (Van Nostrand, New York, 1962), Chap. 5, p. 536.

B. Mewes, G. Bauer, D. Brüggemann, “Vapor/liquid mass fraction measurements by linear Raman spectroscopy,” in Laser Applications to Chemical and Environmental Analysis, Vol. 3 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 184–186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Qualitative LRS spectra of liquid and vapor phases of methanol under cw excitation.7

Fig. 2
Fig. 2

Experimental setup for pulsed one-dimensional Raman spectroscopy.

Fig. 3
Fig. 3

Shadowgraph of a droplet stream at measurement position.

Fig. 4
Fig. 4

Spectrum measured by use of only the notch filter and the pulsed laser with 0.8-GW/cm2 irradiance.

Fig. 5
Fig. 5

Filter transmission measured over the Raman shift corresponding to the wavelength region from 574 to 648 nm for unpolarized light.

Fig. 6
Fig. 6

Single-pulse one-dimensional Raman spectra across a methanol droplet stream (second-order SRS has been truncated to better illustrate the LRS vapor signal).

Fig. 7
Fig. 7

Measured methanol-vapor mole fractions evaluated from the spectra in Fig. 6.

Fig. 8
Fig. 8

Single-pulse LRS spectrum (2.6 GW/cm2) of methanol droplets in the methanol–nitrogen atmosphere at x = 0 with no SRS interference.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IjΔν=NjdσdΩΔν,jCΔνΩI0V,

Metrics