Abstract

Theoretical and experimental results for a new reflection-type confocal microscope with a phase-conjugate mirror (PCM) are presented. The microscope achieves better lateral and axial resolution than the conventional confocal microscope. The observation volume is reduced considerably (approximately 63%). Owing to the properties of the PCM, the system is self-aligning.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Lichtman, “Confocal microscopy,” Sci. Am. 271, 40–45 (1994).
    [CrossRef]
  2. A. Knoester, G. J. Brakenhoff, “Applications of confocal microscopy in industrial solid materials: some examples and first evaluation,” J. Microsc. 157, 105–113 (1990).
    [CrossRef]
  3. K. L. Powell, J. A. Yeomans, P. A. Smith, “Characterization of subsurface damage in ceramic-matrix composites by confocal scanning microscopy,” J. Microsc. 169, 189–195 (1993).
    [CrossRef]
  4. A. Othonos, J. Wheeldon, M. Huibert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
    [CrossRef]
  5. Z. Hegedus, V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3, 1892–1896 (1986).
    [CrossRef]
  6. Z. Ding, G. Wang, M. Gu, Z. Wang, Z. Fan, “Superresolution with an apodization film in confocal setup,” Appl. Opt. 36, 360–363 (1997).
    [CrossRef] [PubMed]
  7. C. J. R. Sheppard, Y. Gong, “Improvement of axial resolution by interference confocal microscopy,” Optik 87, 129–132 (1991).
  8. C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
    [CrossRef]
  9. K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
    [CrossRef]
  10. C. C. Mao, K. M. Johnson, W. T. Cathey, “Superresolving phase conjugate scanning microscope,” Appl. Opt. 29, 3753–3765 (1990).
    [CrossRef] [PubMed]
  11. K. Uhlendorf, A. Krause, G. Notni, “Investigations of a double-pass confocal scanning microscope with a self-pumped phase-conjugate mirror,” Appl. Opt. 37, 865–870 (1998).
    [CrossRef]
  12. O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, L852–L853 (1996).
    [CrossRef]
  13. Y. Kawata, K. Fujita, O. Nakamura, S. Kawata, “4Pi confocal optical system with phase conjugation,” Opt. Lett. 21, 1415–1417 (1996).
    [CrossRef] [PubMed]
  14. C. J. R. Sheppard, T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  15. T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).

1998 (1)

1997 (1)

1996 (2)

Y. Kawata, K. Fujita, O. Nakamura, S. Kawata, “4Pi confocal optical system with phase conjugation,” Opt. Lett. 21, 1415–1417 (1996).
[CrossRef] [PubMed]

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, L852–L853 (1996).
[CrossRef]

1995 (1)

A. Othonos, J. Wheeldon, M. Huibert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[CrossRef]

1994 (1)

J. W. Lichtman, “Confocal microscopy,” Sci. Am. 271, 40–45 (1994).
[CrossRef]

1993 (1)

K. L. Powell, J. A. Yeomans, P. A. Smith, “Characterization of subsurface damage in ceramic-matrix composites by confocal scanning microscopy,” J. Microsc. 169, 189–195 (1993).
[CrossRef]

1991 (1)

C. J. R. Sheppard, Y. Gong, “Improvement of axial resolution by interference confocal microscopy,” Optik 87, 129–132 (1991).

1990 (2)

A. Knoester, G. J. Brakenhoff, “Applications of confocal microscopy in industrial solid materials: some examples and first evaluation,” J. Microsc. 157, 105–113 (1990).
[CrossRef]

C. C. Mao, K. M. Johnson, W. T. Cathey, “Superresolving phase conjugate scanning microscope,” Appl. Opt. 29, 3753–3765 (1990).
[CrossRef] [PubMed]

1989 (1)

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

1986 (1)

1980 (1)

C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
[CrossRef]

Brakenhoff, G. J.

A. Knoester, G. J. Brakenhoff, “Applications of confocal microscopy in industrial solid materials: some examples and first evaluation,” J. Microsc. 157, 105–113 (1990).
[CrossRef]

Cathey, W. T.

C. C. Mao, K. M. Johnson, W. T. Cathey, “Superresolving phase conjugate scanning microscope,” Appl. Opt. 29, 3753–3765 (1990).
[CrossRef] [PubMed]

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

Ding, Z.

Fan, Z.

Fujita, K.

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, L852–L853 (1996).
[CrossRef]

Y. Kawata, K. Fujita, O. Nakamura, S. Kawata, “4Pi confocal optical system with phase conjugation,” Opt. Lett. 21, 1415–1417 (1996).
[CrossRef] [PubMed]

Gong, Y.

C. J. R. Sheppard, Y. Gong, “Improvement of axial resolution by interference confocal microscopy,” Optik 87, 129–132 (1991).

Gu, M.

Hegedus, Z.

Huibert, M.

A. Othonos, J. Wheeldon, M. Huibert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[CrossRef]

Johnson, K. M.

C. C. Mao, K. M. Johnson, W. T. Cathey, “Superresolving phase conjugate scanning microscope,” Appl. Opt. 29, 3753–3765 (1990).
[CrossRef] [PubMed]

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

Kawata, S.

Y. Kawata, K. Fujita, O. Nakamura, S. Kawata, “4Pi confocal optical system with phase conjugation,” Opt. Lett. 21, 1415–1417 (1996).
[CrossRef] [PubMed]

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, L852–L853 (1996).
[CrossRef]

Kawata, Y.

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, L852–L853 (1996).
[CrossRef]

Y. Kawata, K. Fujita, O. Nakamura, S. Kawata, “4Pi confocal optical system with phase conjugation,” Opt. Lett. 21, 1415–1417 (1996).
[CrossRef] [PubMed]

Knoester, A.

A. Knoester, G. J. Brakenhoff, “Applications of confocal microscopy in industrial solid materials: some examples and first evaluation,” J. Microsc. 157, 105–113 (1990).
[CrossRef]

Krause, A.

Lichtman, J. W.

J. W. Lichtman, “Confocal microscopy,” Sci. Am. 271, 40–45 (1994).
[CrossRef]

Mao, C. C.

C. C. Mao, K. M. Johnson, W. T. Cathey, “Superresolving phase conjugate scanning microscope,” Appl. Opt. 29, 3753–3765 (1990).
[CrossRef] [PubMed]

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

Nakamura, O.

Y. Kawata, K. Fujita, O. Nakamura, S. Kawata, “4Pi confocal optical system with phase conjugation,” Opt. Lett. 21, 1415–1417 (1996).
[CrossRef] [PubMed]

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, L852–L853 (1996).
[CrossRef]

Notni, G.

Othonos, A.

A. Othonos, J. Wheeldon, M. Huibert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[CrossRef]

Powell, K. L.

K. L. Powell, J. A. Yeomans, P. A. Smith, “Characterization of subsurface damage in ceramic-matrix composites by confocal scanning microscopy,” J. Microsc. 169, 189–195 (1993).
[CrossRef]

Sarafis, V.

Sheppard, C. J. R.

C. J. R. Sheppard, Y. Gong, “Improvement of axial resolution by interference confocal microscopy,” Optik 87, 129–132 (1991).

C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
[CrossRef]

C. J. R. Sheppard, T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Smith, P. A.

K. L. Powell, J. A. Yeomans, P. A. Smith, “Characterization of subsurface damage in ceramic-matrix composites by confocal scanning microscopy,” J. Microsc. 169, 189–195 (1993).
[CrossRef]

Uhlendorf, K.

Wang, G.

Wang, Z.

Wheeldon, J.

A. Othonos, J. Wheeldon, M. Huibert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[CrossRef]

Wilson, T.

C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
[CrossRef]

C. J. R. Sheppard, T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Yeomans, J. A.

K. L. Powell, J. A. Yeomans, P. A. Smith, “Characterization of subsurface damage in ceramic-matrix composites by confocal scanning microscopy,” J. Microsc. 169, 189–195 (1993).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

J. Microsc. (2)

A. Knoester, G. J. Brakenhoff, “Applications of confocal microscopy in industrial solid materials: some examples and first evaluation,” J. Microsc. 157, 105–113 (1990).
[CrossRef]

K. L. Powell, J. A. Yeomans, P. A. Smith, “Characterization of subsurface damage in ceramic-matrix composites by confocal scanning microscopy,” J. Microsc. 169, 189–195 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, L852–L853 (1996).
[CrossRef]

Opt. Acta (1)

C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
[CrossRef]

Opt. Eng. (1)

A. Othonos, J. Wheeldon, M. Huibert, “Determining erbium distribution in optical fibers using phase-sensitive confocal microscopy,” Opt. Eng. 34, 3451–3455 (1995).
[CrossRef]

Opt. Lett. (1)

Optik (1)

C. J. R. Sheppard, Y. Gong, “Improvement of axial resolution by interference confocal microscopy,” Optik 87, 129–132 (1991).

Sci. Am. (1)

J. W. Lichtman, “Confocal microscopy,” Sci. Am. 271, 40–45 (1994).
[CrossRef]

Other (2)

C. J. R. Sheppard, T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup for the reflection-type confocal microscope with a PCM.

Fig. 2
Fig. 2

Self-pumped PCM with total internal reflection.

Fig. 3
Fig. 3

Unfolded optical path of the confocal microscope with a PCM, assuming perfect phase conjugation. L’s, lenses; PH’s, pinholes.

Fig. 4
Fig. 4

Point object imaged by (a) the conventional confocal microscope and (b) the confocal microscope with a PCM.

Fig. 5
Fig. 5

Observation volume of (a) the confocal microscope with a PCM and (b) the conventional confocal microscope.

Fig. 6
Fig. 6

Variation of signal intensity I(u) for a conventional confocal microscope and a confocal microscope with a PCM.

Fig. 7
Fig. 7

Half-widths of I(u)-versus-u curves of Fig. 6 as a function of the normalized detector radius v p .

Fig. 8
Fig. 8

Experimental results of imaging a plane mirror axially through the focus.

Tables (1)

Tables Icon

Table 1 Lateral and Axial FWHM’s of an Imaged Point Object

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

UPCMxs= δx0h1x0/M+x1txs-x1×h2x1+x2/Mδx2δx2h3x2/M+x3txs-x3h4x3+x4/M×δx4dx0dx1dx2dx3dx4,
UPCMxs= h1x1txs-x1h2x1h3x3×txs-x3h4x3dx1dx3.
Uconvxs= h1x1txs-x1h2x1dx1,
UPCMxs=Uconvxs2.
v=2πλx2+y21/2 sin α,
u=8πλ z sin2α2,
hu, v=2 01 Pρexp½juρ2J0vρρdρ,
tu, v=δuδv.
Iconvu=sinu/2u/22,
IPCMu=sinu/2u/24.

Metrics