Abstract

Absorbers were imaged through a highly scattering material by application of spectral holography. A broad-spectrum source forms the spectral hologram of light transmitted by a diffuser, and computer processing reconstructs a series of images of the diffuser as it would have appeared with scattered light that traveled different path lengths. One of these reconstructed images is certain to be an image formed with first-arriving light and is therefore an image of the diffuser as seen with the least-scattered light. Experimental results present an image of an absorber hidden by a diffuser in which the gating was done by computer.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Duguay, A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2170 (1971).
    [CrossRef] [PubMed]
  2. D. I. Staselko, Yu. N. Denisyuk, A. G. Smirnov, “Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source,” Opt. Spectrosc. (USSR) 26, 413–420 (1969).
  3. Yu. N. Denisyuk, D. I. Staselko, R. R. Herke, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” Nouv. Rev. Opt. Appl. 1, Suppl. 2, 4–5 (1970).
  4. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [CrossRef]
  5. J. C. Marron, K. S. Schroeder, “Holographic laser radar,” Opt. Lett. 18, 385–387 (1993).
    [CrossRef] [PubMed]
  6. E. Arons, D. Dilworth, M. Shih, P.-C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).
    [CrossRef] [PubMed]
  7. E. Arons, D. Dilworth, “Analysis of Fourier synthesis holography for imaging through scattering materials,” Appl. Opt. 34, 1841–1847 (1995).
    [CrossRef] [PubMed]
  8. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
    [CrossRef]
  9. E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.
  10. Yu. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
    [CrossRef]
  11. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
    [CrossRef]
  12. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
    [CrossRef] [PubMed]

1995 (1)

1993 (2)

1992 (3)

1990 (1)

Yu. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
[CrossRef]

1971 (1)

1970 (1)

Yu. N. Denisyuk, D. I. Staselko, R. R. Herke, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” Nouv. Rev. Opt. Appl. 1, Suppl. 2, 4–5 (1970).

1969 (1)

D. I. Staselko, Yu. N. Denisyuk, A. G. Smirnov, “Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source,” Opt. Spectrosc. (USSR) 26, 413–420 (1969).

Arons, E.

E. Arons, D. Dilworth, “Analysis of Fourier synthesis holography for imaging through scattering materials,” Appl. Opt. 34, 1841–1847 (1995).
[CrossRef] [PubMed]

E. Arons, D. Dilworth, M. Shih, P.-C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).
[CrossRef] [PubMed]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Chen, C.

Chen, H.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Chen, Y.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
[CrossRef]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Clay, K.

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Denisyuk, Yu. N.

Yu. N. Denisyuk, D. I. Staselko, R. R. Herke, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” Nouv. Rev. Opt. Appl. 1, Suppl. 2, 4–5 (1970).

D. I. Staselko, Yu. N. Denisyuk, A. G. Smirnov, “Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source,” Opt. Spectrosc. (USSR) 26, 413–420 (1969).

Dilworth, D.

E. Arons, D. Dilworth, “Analysis of Fourier synthesis holography for imaging through scattering materials,” Appl. Opt. 34, 1841–1847 (1995).
[CrossRef] [PubMed]

E. Arons, D. Dilworth, M. Shih, P.-C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).
[CrossRef] [PubMed]

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Draper, R.

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Duguay, M. A.

Herke, R. R.

Yu. N. Denisyuk, D. I. Staselko, R. R. Herke, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” Nouv. Rev. Opt. Appl. 1, Suppl. 2, 4–5 (1970).

Leaird, D. E.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

Leith, E.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
[CrossRef]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

Lopez, J.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
[CrossRef]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

Marron, J. C.

Mattick, A. T.

Mazurenko, Yu. T.

Yu. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
[CrossRef]

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Rudd, J.

Schroeder, K. S.

Shih, M.

E. Arons, D. Dilworth, M. Shih, P.-C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).
[CrossRef] [PubMed]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

Smirnov, A. G.

D. I. Staselko, Yu. N. Denisyuk, A. G. Smirnov, “Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source,” Opt. Spectrosc. (USSR) 26, 413–420 (1969).

Staselko, D. I.

Yu. N. Denisyuk, D. I. Staselko, R. R. Herke, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” Nouv. Rev. Opt. Appl. 1, Suppl. 2, 4–5 (1970).

D. I. Staselko, Yu. N. Denisyuk, A. G. Smirnov, “Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source,” Opt. Spectrosc. (USSR) 26, 413–420 (1969).

Sun, P.-C.

E. Arons, D. Dilworth, M. Shih, P.-C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).
[CrossRef] [PubMed]

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
[CrossRef]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

Valdmanis, J.

Vossler, G.

Weiner, A. M.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

Yu. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nouv. Rev. Opt. Appl. (1)

Yu. N. Denisyuk, D. I. Staselko, R. R. Herke, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” Nouv. Rev. Opt. Appl. 1, Suppl. 2, 4–5 (1970).

Opt. Lett. (3)

Opt. Spectrosc. (USSR) (1)

D. I. Staselko, Yu. N. Denisyuk, A. G. Smirnov, “Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source,” Opt. Spectrosc. (USSR) 26, 413–420 (1969).

Other (2)

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P.-C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P.-C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

SDH optical system used to form the spectral hologram.

Fig. 2
Fig. 2

Dispersion by a diffraction grating converts the frequency to the x position. The y direction points out of the paper.

Fig. 3
Fig. 3

Image of the first diffracted order hologram of the slit, obtained by use of a monochromatic source.

Fig. 4
Fig. 4

Results of the computer-processing operation. DFT means discrete Fourier transform.

Fig. 5
Fig. 5

Object beam: The wire (the object to be imaged) is obscured by wax, which is followed by the slit.

Fig. 6
Fig. 6

Spectral hologram obtained by use of the first diffracted order and a broadband source.

Fig. 7
Fig. 7

Slit evolution profile: computed sequence of gated images of the slit, processed from Fig. 6. Columns j = 0 to j = 255 are arranged from right to left. The best image is column j = 150.

Fig. 8
Fig. 8

Target and wax are scanned across the slit to build up the other dimension for 2-D imaging.

Fig. 9
Fig. 9

(a) Absorbing object to be imaged. (b) Absorbing object obscured by wax.

Fig. 10
Fig. 10

Two-dimensional imaging through the diffuser with spectral holography. The best image is processed from j = 150: (a) one speckle pattern and (b) average over three speckle patterns.

Fig. 11
Fig. 11

Later-arriving-light images formed from the same SEP’s used to obtain Fig. 10(b) and averaged over three speckle patterns [see Fig. 10(b)]: (a) j = 156, later-arriving light, and (b) j = 165, even-later-arriving light.

Fig. 12
Fig. 12

Different relative path lengths in an optical system still form the best image: (a) The reference beam is shorter than the object beam and j = 150. (b) The reference and the object beams are exactly matched in length and j > 150.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ix, y, f=uour*=exp-i2παyayGfG*f×Dy, fδx-xs.
sin θ= sin θ0+cos θ0Δθ=fsλ+1-fs2λ021/2Δθ
λ-λ0=c1/f-1/f0=c/f01-f/f0-cf-f0/f02,
xs=Dfsc1-fs2λ02-1/2f-f0/f02.
Ix, y=exp-i2παyayGf021-fs2λ021/2Dfsc x+f02×Dy, f021-fs2λ021/2Dfsc x+f0.
Iy, f=uour*=exp-i2παyayGfG*f×Dy, fΣδf-mΔf,
Jy, t=g˜t  dy, t  k δt-kΔT×j δt-jΔtexp-i2παyay,
Jy, t=g˜t  dy, tj δt-jΔt×exp-i2παyay.
Jy, t= dy, tj δt-jΔtexp-i2παyay
Kfy, t=j δt-jΔtDfy, t δfy-α  Afy.
Iy, t=dy, t  ayj δt-jΔt.

Metrics