Abstract

A broadband (5–500 Hz) all-fiber-optic accelerometer was developed on the basis of Michelson interferometry, which is realized by a 3-dB single-mode fiber-optic beam splitter. On the distal endface of both interferometric arms of the splitter high-reflectance aluminum films were directly deposited to act as reflecting mirrors. The performance of a prototype of the accelerometer is examined. The results reveal that external stimuli can be truly sensed by the accelerometer, and the constraint level on lateral movement of the acceleration-sensitive mass is an important factor in determining the useful frequency bandwidth. The experimental results are compared with theoretical predictions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
    [CrossRef]
  2. A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
    [CrossRef]
  3. A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
    [CrossRef]
  4. F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
    [CrossRef]
  5. A. S. Gerges, T. P. Newson, J. D. C. Jones, D. A. Jackson, “High-sensitivity fiber-optic accelerometer,” Opt. Lett. 14, 251–253 (1989).
    [CrossRef] [PubMed]
  6. R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
    [CrossRef]
  7. C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
    [CrossRef]
  8. A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
    [CrossRef]

1998

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

1995

R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
[CrossRef]

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

1989

1986

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

1982

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

1980

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Bucholtz, F.

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

Chen, C.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Corke, M.

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

Cui, Y.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Dandridge, A.

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Davis, C. M.

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Ding, G.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Gerges, A. S.

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Jackson, D. A.

R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
[CrossRef]

A. S. Gerges, T. P. Newson, J. D. C. Jones, D. A. Jackson, “High-sensitivity fiber-optic accelerometer,” Opt. Lett. 14, 251–253 (1989).
[CrossRef] [PubMed]

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

Jones, J. D. C.

Kersey, A. D.

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

Li, S.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Newson, T. P.

Pechstedt, R. D.

R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
[CrossRef]

Tveten, A. B.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

Udd, E.

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

Zhang, D.

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

Electron. Lett.

A. B. Tveten, A. Dandridge, C. M. Davis, T. G. Giallorenzi, “Fibre optic accelerometer,” Electron. Lett. 16, 854–856 (1980).
[CrossRef]

A. D. Kersey, D. A. Jackson, M. Corke, “High-sensitivity fibre-optic accelerometer,” Electron. Lett. 18, 559–561 (1982).
[CrossRef]

F. Bucholtz, A. D. Kersey, A. Dandridge, “DC fibre-optic accelerometer with sub-µg sensitivity,” Electron. Lett. 22, 451–453 (1986).
[CrossRef]

IEEE J. Quantum Electron.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1653 (1982).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

R. D. Pechstedt, D. A. Jackson, “Performance analysis of a fiber optic accelerometer based on a compliant cylinder design,” Rev. Sci. Instrum. 66, 207–214 (1995).
[CrossRef]

C. Chen, G. Ding, D. Zhang, Y. Cui, S. Li, “Michelson fiberoptic accelerometer,” Rev. Sci. Instrum. 69, 3123–3126 (1998).
[CrossRef]

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of the Michelson accelerometer. LD, laser diode; A/D, analog-to-digital; FFT, fast Fourier transform.

Fig. 2
Fig. 2

Mechanical schematic of the sensing element.

Fig. 3
Fig. 3

Waveforms of (a) output and (b) vibrator for a = 0.6g and f = 80 Hz.

Fig. 4
Fig. 4

Measured frequency spectra: (a) m = 0.4 g, L = 16 mm, and without constraining the lateral movement; (b) m = 0.4 g, L = 16 mm, and constraining with two plate springs; (c) m = 0.3 g, L = 6 mm, and constraining with two plate springs; (d) m = 0.3 g, L = 6 mm, and constraining with one plate spring.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Voutt=2KAmGJ1ϕsJ1ϕmsinωst+δ,
fn=4.76mL,

Metrics