Abstract

Photosensitive silicate glasses doped with silver, cerium, fluorine, and bromine were fabricated at the Center for Research and Education in Optics and Lasers. Bragg diffractive gratings were recorded in the volume of these glasses with a photothermorefractive process (exposure to UV radiation of a He–Cd laser at 325 nm is followed by thermal development at 520 °C). Absolute diffraction efficiency of as much as 93% was observed for 1-mm-thick gratings with spatial frequencies up to 2500 mm-1. No decreasing of diffraction efficiency was detected at low spatial frequencies. Original glasses were transparent (absorption coefficient less than 1 cm-1) from 350 to 4100 nm. Induced losses in exposed and developed glass decreased from 0.3 to 0.03 cm-1 between 400 and 700 nm, respectively, and did not exceed 0.01–0.02 cm-1 in the IR region from 700 to 2500 nm. Additional losses caused by parasitic structures recorded in the photosensitive medium were studied.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hariharan, “Practical recording materials,” in Optical Holography, Principles, Techniques, and Applications (Cambridge U. Press, Cambridge, UK, 1996), Chap. 7, pp. 95–124.
    [CrossRef]
  2. V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).
  3. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).
  4. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).
  5. S. D. Stookey, “Photosensitive glass (a new photographic medium),” Ind. Eng. Chem. 41, 856–861 (1949).
    [CrossRef]
  6. S. D. Stookey, G. H. Beall, J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
    [CrossRef]
  7. N. F. Borrelli, J. B. Chodak, D. A. Nolan, T. P. Seward, “Interpretation of induced color in polychromatic glasses,” J. Opt. Soc. Am. 69, 1514–1519 (1979).
    [CrossRef]
  8. A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, I. V. Tunimanova, “Absorption spectra of multichromatic glasses,” Sov. J. Glass Phys. Chem. 11, 592–595 (1985).
  9. L. Levy, “Applied optics,” in Physical Optics: The Wave Nature of Light (Wiley, New York, 1968), Chap. 2, pp. 35–123.
  10. E. N. Boulos, N. J. Kreidl, “Water in glass: a review,” J. Can. Ceram. Soc. 41, 83–86 (1972).
  11. M. Moran, I. P. Kaminow, “Properties of holographic grating photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1970 (1973).
    [CrossRef] [PubMed]
  12. M. R. B. Forshaw, “Explanation of two-ring diffraction phenomenon observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974).
    [CrossRef]
  13. R. Magnusson, T. K. Gaylor, “Laser scattering induced holograms in lithium niobate,” Appl. Opt. 13, 1545–1548 (1974).
    [CrossRef]

1992 (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

1990 (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

1989 (1)

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).

1985 (1)

A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, I. V. Tunimanova, “Absorption spectra of multichromatic glasses,” Sov. J. Glass Phys. Chem. 11, 592–595 (1985).

1979 (1)

1978 (1)

S. D. Stookey, G. H. Beall, J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[CrossRef]

1974 (2)

1973 (1)

1972 (1)

E. N. Boulos, N. J. Kreidl, “Water in glass: a review,” J. Can. Ceram. Soc. 41, 83–86 (1972).

1949 (1)

S. D. Stookey, “Photosensitive glass (a new photographic medium),” Ind. Eng. Chem. 41, 856–861 (1949).
[CrossRef]

Beall, G. H.

S. D. Stookey, G. H. Beall, J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[CrossRef]

Borgman, V. A.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).

Borrelli, N. F.

Boulos, E. N.

E. N. Boulos, N. J. Kreidl, “Water in glass: a review,” J. Can. Ceram. Soc. 41, 83–86 (1972).

Chodak, J. B.

Dotsenko, A. V.

A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, I. V. Tunimanova, “Absorption spectra of multichromatic glasses,” Sov. J. Glass Phys. Chem. 11, 592–595 (1985).

Efremov, A. M.

A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, I. V. Tunimanova, “Absorption spectra of multichromatic glasses,” Sov. J. Glass Phys. Chem. 11, 592–595 (1985).

Forshaw, M. R. B.

Gaylor, T. K.

Glebov, L. B.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).

Hariharan, P.

P. Hariharan, “Practical recording materials,” in Optical Holography, Principles, Techniques, and Applications (Cambridge U. Press, Cambridge, UK, 1996), Chap. 7, pp. 95–124.
[CrossRef]

Kaminow, I. P.

Kreidl, N. J.

E. N. Boulos, N. J. Kreidl, “Water in glass: a review,” J. Can. Ceram. Soc. 41, 83–86 (1972).

Levy, L.

L. Levy, “Applied optics,” in Physical Optics: The Wave Nature of Light (Wiley, New York, 1968), Chap. 2, pp. 35–123.

Magnusson, R.

Moran, M.

Nikonorov, N. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).

Nolan, D. A.

Panysheva, E. I.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, I. V. Tunimanova, “Absorption spectra of multichromatic glasses,” Sov. J. Glass Phys. Chem. 11, 592–595 (1985).

Petrovskii, G. T.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).

Pierson, J. E.

S. D. Stookey, G. H. Beall, J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[CrossRef]

Savvin, V. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).

Seward, T. P.

Stookey, S. D.

S. D. Stookey, G. H. Beall, J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[CrossRef]

S. D. Stookey, “Photosensitive glass (a new photographic medium),” Ind. Eng. Chem. 41, 856–861 (1949).
[CrossRef]

Tsekhomskii, V. A.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

Tsvetkov, A. D.

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).

Tunimanova, I. V.

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, I. V. Tunimanova, “Absorption spectra of multichromatic glasses,” Sov. J. Glass Phys. Chem. 11, 592–595 (1985).

Zakharov, V. K.

A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, I. V. Tunimanova, “Absorption spectra of multichromatic glasses,” Sov. J. Glass Phys. Chem. 11, 592–595 (1985).

Appl. Opt. (3)

Ind. Eng. Chem. (1)

S. D. Stookey, “Photosensitive glass (a new photographic medium),” Ind. Eng. Chem. 41, 856–861 (1949).
[CrossRef]

J. Appl. Phys. (1)

S. D. Stookey, G. H. Beall, J. E. Pierson, “Full-color photosensitive glass,” J. Appl. Phys. 49, 5114–5123 (1978).
[CrossRef]

J. Can. Ceram. Soc. (1)

E. N. Boulos, N. J. Kreidl, “Water in glass: a review,” J. Can. Ceram. Soc. 41, 83–86 (1972).

J. Opt. Soc. Am. (1)

Opt. Spectrosc. (1)

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).

Sov. J. Glass Phys. Chem. (1)

A. V. Dotsenko, A. M. Efremov, V. K. Zakharov, E. I. Panysheva, I. V. Tunimanova, “Absorption spectra of multichromatic glasses,” Sov. J. Glass Phys. Chem. 11, 592–595 (1985).

Sov. Phys. Dokl. (2)

V. A. Borgman, L. B. Glebov, N. V. Nikonorov, G. T. Petrovskii, V. V. Savvin, A. D. Tsvetkov, “Photo-thermal refractive effect in silicate glasses,” Sov. Phys. Dokl. 34, 1011–1013 (1989).

L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “Polychromatic glasses—a new material for recording volume phase holograms,” Sov. Phys. Dokl. 35, 878–880 (1990).

Other (2)

P. Hariharan, “Practical recording materials,” in Optical Holography, Principles, Techniques, and Applications (Cambridge U. Press, Cambridge, UK, 1996), Chap. 7, pp. 95–124.
[CrossRef]

L. Levy, “Applied optics,” in Physical Optics: The Wave Nature of Light (Wiley, New York, 1968), Chap. 2, pp. 35–123.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectra of PTR glass: (a) and (b) original glass in the UV and IR spectral regions, (c) induced absorption after exposure to 325 nm for 400 mJ/cm2 (curve 1) and consequent thermal development for 1 h at 520 °C (curve 2). Arrow shows the position of the wavelength of the writing He–Cd laser.

Fig. 2
Fig. 2

Parasitic phase structures recorded in glass. (a) Experimental setup. Exciting radiation of the He–Cd laser at 325 nm was launched at the top surface of the specimen to produce a cylindrically exposed area in the glass bulk. No interference with reflected beams occurs in the top part of exposed area. Optical microscopy from the polished front side of the sample (A) and from the topside (B) was accomplished. Arrows show the directions of displacements of the movable sample holder. (b) Optical micrograph of the rain-type structure from position A. (c) Optical micrograph of the rain-type structure from position B. (d) Optical micrograph of the ring-type structure from position B.

Fig. 3
Fig. 3

Diffraction on parasitic holograms of scattered light. (a) Experimental setup. The probe beam is shown with zero angle of incidence. (b) Diffraction pattern for interference pattern created by two beams with the same angles of incidence and the angle of incidence of the probe beam equal to the Bragg angle. (c) Diffraction pattern for the same interference pattern and zero angle of incidence of the probe beam.

Fig. 4
Fig. 4

Effect of the period of thermal treatment on optical properties of diffractive grating in PTR glass: (a) absolute diffraction efficiency and (b) induced refractive index. Exposure was 400 mJ/cm2 at 325 nm, spatial frequency was 600 mm-1, development was at 520 °C, and specimen thickness was 1.42 mm.

Fig. 5
Fig. 5

Dependence of absolute diffraction efficiency on the spatial frequency of the grating. Exposure is 600 mJ/cm2 at 325 nm and development is 90 min at 520 °C. Specimen thickness is 1.65 mm.

Fig. 6
Fig. 6

Maximum absolute diffraction efficiencies of Bragg gratings in PTR glasses that underwent different exposures to radiation of the He–Cd laser at 325 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ηR=I1I0+I1,
ηA=I11-ρ2IL.
δn=λ cos Θ arcsinηRπd,

Metrics