Abstract

We measured two-step photoion current spectra by using a semiconductor laser and a Q-switched Nd:YAG laser with fourth-harmonic generation in an atomic lithium beam. The number of ions measured was compared with an estimate from the diode laser absorption measurement that uses a set of precisely solved rate equations. We explain the saturation effects on absorption by using transit time relaxation and detailed calculations of the ionization levels.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
    [CrossRef]
  2. N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
    [CrossRef]
  3. M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).
  4. M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
    [CrossRef]
  5. G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
    [CrossRef]
  6. I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
    [CrossRef]
  7. A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
    [CrossRef]
  8. C. J. Sansonetti, B. Richou, R. Engleman, L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
    [CrossRef] [PubMed]
  9. J. R. Ackerhalt, B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
    [CrossRef]

1998 (2)

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

1995 (1)

C. J. Sansonetti, B. Richou, R. Engleman, L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[CrossRef] [PubMed]

1994 (1)

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

1982 (1)

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

1979 (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

1977 (2)

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

J. R. Ackerhalt, B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
[CrossRef]

Ackerhalt, J. R.

J. R. Ackerhalt, B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
[CrossRef]

Arisawa, T.

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Deng, L.

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

Dinklage, A.

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Duarte, A. E.

Duarte, F. J.

Engleman, R.

C. J. Sansonetti, B. Richou, R. Engleman, L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[CrossRef] [PubMed]

Hurst, G. S.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Karlov, N. V.

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

Kashiwagi, H.

M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).

Kramer, S. D.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Krynetskii, B. B.

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

Kunze, H. J.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Lokajczyk, T.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

Maruyama, Y.

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Olivares, I. E.

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Payne, M. G.

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Radziemski, L. J.

C. J. Sansonetti, B. Richou, R. Engleman, L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[CrossRef] [PubMed]

Richou, B.

C. J. Sansonetti, B. Richou, R. Engleman, L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[CrossRef] [PubMed]

Sansonetti, C. J.

C. J. Sansonetti, B. Richou, R. Engleman, L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[CrossRef] [PubMed]

Schweer, B.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Shiba, K.

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Shore, B. W.

J. R. Ackerhalt, B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
[CrossRef]

Stel’makh, O. M.

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

Suzuki, Y.

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Thonnard, N.

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

Yamashita, M.

M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).

Young, J. P.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Appl. Phys. B (1)

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. A (2)

C. J. Sansonetti, B. Richou, R. Engleman, L. J. Radziemski, “Measurements of the resonance lines of 6Li and 7Li by Doppler-free frequency modulation spectroscopy,” Phys. Rev. A 52, 2682–2688 (1995).
[CrossRef] [PubMed]

J. R. Ackerhalt, B. W. Shore, “Rate equations versus Bloch equations in multiphoton ionization,” Phys. Rev. A 16, 277–282 (1977).
[CrossRef]

Rev. Mod. Phys. (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Rev. Sci. Instrum. (2)

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Sov. J. Quantum Electron. (1)

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

Other (1)

M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy level diagram for the two-step photoionization of lithium isotopes. For λ < 350 nm the lithium atom is ionized from its previous excited state. The selectivity was achieved with the diode laser. The 2p 2 P 1/2–2p 2 P 3/2 spacing of 0.015 nm is on a greatly exaggerated scale in this figure compared with the energy levels.

Fig. 2
Fig. 2

Apparatus diagram for RIS of lithium isotopes: K-Cell, Knudsen cell; S, collimation slit; LE1, diode laser; LI2, Nd:YAG laser; fl1 and fl2, focusing lenses; i, interaction region; C, collector plate; V, applied acceleration voltage; R, resistance; LA, lock-in amplifier; DSO, digital storage oscilloscope.

Fig. 3
Fig. 3

Typical RIS trace for the 6Li and 7Li isotopes.

Fig. 4
Fig. 4

Saturation curve for the absorption of the 7Li D 2 line at 670.7764 nm.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ρ˙00=Wρ11-ρ00+γρ11, ρ˙11=Wρ00-ρ11-γρ11-Γiρ11, W=1/2 Ω2ΓΓ2+ω-ω0-k·v2,
ρ00t=A expλ1t+B expλ2t,
ρ11t=C expλ1t+D expλ2t,
λ1,2=-b±b2-c,
b=W+12τ+Γi2,
c=WΓi,
A=1λ1-λ2-W+λ2+ρ1102W+γ+λ2,
B=1λ1-λ2W+λ1-ρ1102W+γ+λ1,
C=1λ1-λ2W-ρ1102W+λ1,
D=1λ1-λ2-W-ρ110λ2),
ρ000+ρ110=1.
Pit=1-ρ00t-ρ11t.
Ni=ρV 1X0X0t Pitdtdx,
Ni=ρVΓi1X0X0t ρ11tdtdx.
Ni=ρVΓit 1X0X ρ11tdx.
dI=-hνρ 1τ ρ11dx.
Ni=AτσiIiI0-Ih2νeνi,
Ni=αPiPe1-T/A,
Texp-σnx,
σσ01+S0,
NkTUVVM/eR,

Metrics