Abstract

For measurements of transient absorption a laser-raster technique has been found to be surprisingly sensitive. It utilizes spatial separation of excitation and probing by employing a fast-flowing jet stream. The time resolution is determined by the flow velocity and the focal diameters of the continuous excitation and probing laser beams. Changes in transmission can be detected in the spectral region from 350 to 1000 nm. A dual-frequency modulation technique is used to achieve a sensitivity of 10-4. The time resolution is 0.5 µs. The performance of this spectrometer is demonstrated by measurement of the absorption of the transient states of Rhodamine 6G dye in ethylene glycol.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Brückner, K.-H. Feller, U.-W. Grummt, Applications of Time-Resolved Optical Spectroscopy (Elsevier, Amsterdam, 1990).
  2. P. Sathy, R. Philip, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoacoustic observation of excited singlet state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
    [CrossRef]
  3. V. M. Baev, “Höchstempfindliche Spektroskopie mit Vielmoden-Lasern,” Habilitation-Thesis (University of Hamburg, Hamburg, Germany, 1993).
  4. T. D. Harris, “Laser intracavity-enhanced spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Klinger, ed. (Academic, New York, 1983).
  5. J. Pfab, “Laser-induced fluorescence spectroscopy,” in Applied Laser Spectroscopy, D. L. Andrews, ed. (VCH, New York, 1992), pp. 111–184.
  6. R. Riegler, J. Widengren, Ü. Mets, “Interactions and kinetics of single molecules as observed by fluorescence correlation spectroscopy,” in Fluorescence Spectroscopy: New Methods and Applications, O. S. Wolfbeis, ed. (Springer-Verlag, Berlin, 1992), pp. 13–24.
  7. R. A. Keller, W. P. Ambrose, P. M. Goodwin, J. H. Jett, J. C. Martin, M. Wu, “Single molecule fluorescence analysis in solution,” Appl. Spectrosc. 50, 12A–32A (1996).
    [CrossRef]
  8. W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1996).
    [CrossRef]
  9. E. Thiel, K.-H. Drexhage, “New method to investigate weakly populated transient states,” Chem. Phys. Lett. 199, 329–334 (1992).
    [CrossRef]
  10. I. Carmichael, G. L. Hug, “Triplet-triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Ref. Data 15, 1–250 (1986).
    [CrossRef]
  11. I. Carmichael, G. L. Hug, “A unified analysis of noncomparative methods for measuring extinction coefficients of triplet–triplet transitions,” Appl. Spectrosc. 41, 1033–1038 (1987).
    [CrossRef]
  12. E. Thiel, Eigenschaften angeregter Rhodaminfarbstoffe und deren Wirkung im Farbstofflaser (Shaker-Verlag, Aachen, Germany, 1996).
  13. R. Menzel, E. Thiel, “Excited-state properties of trichromophoric dye molecules,” J. Phys. Chem. A 102, 10,916–10,920 (1998).
    [CrossRef]
  14. C. Zander, E. Thiel, K.-H. Drexhage, “Compact arc lamp of high luminance,” Appl. Opt. 28, 3968–3971 (1989).
    [CrossRef] [PubMed]

1998 (1)

R. Menzel, E. Thiel, “Excited-state properties of trichromophoric dye molecules,” J. Phys. Chem. A 102, 10,916–10,920 (1998).
[CrossRef]

1996 (1)

1994 (1)

P. Sathy, R. Philip, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoacoustic observation of excited singlet state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

1992 (1)

E. Thiel, K.-H. Drexhage, “New method to investigate weakly populated transient states,” Chem. Phys. Lett. 199, 329–334 (1992).
[CrossRef]

1989 (1)

1987 (1)

1986 (1)

I. Carmichael, G. L. Hug, “Triplet-triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Ref. Data 15, 1–250 (1986).
[CrossRef]

Ambrose, W. P.

Baev, V. M.

V. M. Baev, “Höchstempfindliche Spektroskopie mit Vielmoden-Lasern,” Habilitation-Thesis (University of Hamburg, Hamburg, Germany, 1993).

Brückner, V.

V. Brückner, K.-H. Feller, U.-W. Grummt, Applications of Time-Resolved Optical Spectroscopy (Elsevier, Amsterdam, 1990).

Carmichael, I.

I. Carmichael, G. L. Hug, “A unified analysis of noncomparative methods for measuring extinction coefficients of triplet–triplet transitions,” Appl. Spectrosc. 41, 1033–1038 (1987).
[CrossRef]

I. Carmichael, G. L. Hug, “Triplet-triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Ref. Data 15, 1–250 (1986).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1996).
[CrossRef]

Drexhage, K.-H.

E. Thiel, K.-H. Drexhage, “New method to investigate weakly populated transient states,” Chem. Phys. Lett. 199, 329–334 (1992).
[CrossRef]

C. Zander, E. Thiel, K.-H. Drexhage, “Compact arc lamp of high luminance,” Appl. Opt. 28, 3968–3971 (1989).
[CrossRef] [PubMed]

Feller, K.-H.

V. Brückner, K.-H. Feller, U.-W. Grummt, Applications of Time-Resolved Optical Spectroscopy (Elsevier, Amsterdam, 1990).

Goodwin, P. M.

Grummt, U.-W.

V. Brückner, K.-H. Feller, U.-W. Grummt, Applications of Time-Resolved Optical Spectroscopy (Elsevier, Amsterdam, 1990).

Harris, T. D.

T. D. Harris, “Laser intracavity-enhanced spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Klinger, ed. (Academic, New York, 1983).

Hug, G. L.

I. Carmichael, G. L. Hug, “A unified analysis of noncomparative methods for measuring extinction coefficients of triplet–triplet transitions,” Appl. Spectrosc. 41, 1033–1038 (1987).
[CrossRef]

I. Carmichael, G. L. Hug, “Triplet-triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Ref. Data 15, 1–250 (1986).
[CrossRef]

Jett, J. H.

Keller, R. A.

Martin, J. C.

Menzel, R.

R. Menzel, E. Thiel, “Excited-state properties of trichromophoric dye molecules,” J. Phys. Chem. A 102, 10,916–10,920 (1998).
[CrossRef]

Mets, Ü.

R. Riegler, J. Widengren, Ü. Mets, “Interactions and kinetics of single molecules as observed by fluorescence correlation spectroscopy,” in Fluorescence Spectroscopy: New Methods and Applications, O. S. Wolfbeis, ed. (Springer-Verlag, Berlin, 1992), pp. 13–24.

Nampoori, V. P. N.

P. Sathy, R. Philip, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoacoustic observation of excited singlet state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Pfab, J.

J. Pfab, “Laser-induced fluorescence spectroscopy,” in Applied Laser Spectroscopy, D. L. Andrews, ed. (VCH, New York, 1992), pp. 111–184.

Philip, R.

P. Sathy, R. Philip, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoacoustic observation of excited singlet state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Riegler, R.

R. Riegler, J. Widengren, Ü. Mets, “Interactions and kinetics of single molecules as observed by fluorescence correlation spectroscopy,” in Fluorescence Spectroscopy: New Methods and Applications, O. S. Wolfbeis, ed. (Springer-Verlag, Berlin, 1992), pp. 13–24.

Sathy, P.

P. Sathy, R. Philip, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoacoustic observation of excited singlet state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Thiel, E.

R. Menzel, E. Thiel, “Excited-state properties of trichromophoric dye molecules,” J. Phys. Chem. A 102, 10,916–10,920 (1998).
[CrossRef]

E. Thiel, K.-H. Drexhage, “New method to investigate weakly populated transient states,” Chem. Phys. Lett. 199, 329–334 (1992).
[CrossRef]

C. Zander, E. Thiel, K.-H. Drexhage, “Compact arc lamp of high luminance,” Appl. Opt. 28, 3968–3971 (1989).
[CrossRef] [PubMed]

E. Thiel, Eigenschaften angeregter Rhodaminfarbstoffe und deren Wirkung im Farbstofflaser (Shaker-Verlag, Aachen, Germany, 1996).

Vallabhan, C. P. G.

P. Sathy, R. Philip, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoacoustic observation of excited singlet state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

Widengren, J.

R. Riegler, J. Widengren, Ü. Mets, “Interactions and kinetics of single molecules as observed by fluorescence correlation spectroscopy,” in Fluorescence Spectroscopy: New Methods and Applications, O. S. Wolfbeis, ed. (Springer-Verlag, Berlin, 1992), pp. 13–24.

Wu, M.

Zander, C.

Appl. Opt. (1)

Appl. Spectrosc. (2)

Chem. Phys. Lett. (1)

E. Thiel, K.-H. Drexhage, “New method to investigate weakly populated transient states,” Chem. Phys. Lett. 199, 329–334 (1992).
[CrossRef]

J. Phys. Chem. A (1)

R. Menzel, E. Thiel, “Excited-state properties of trichromophoric dye molecules,” J. Phys. Chem. A 102, 10,916–10,920 (1998).
[CrossRef]

J. Phys. D (1)

P. Sathy, R. Philip, V. P. N. Nampoori, C. P. G. Vallabhan, “Photoacoustic observation of excited singlet state absorption in the laser dye Rhodamine 6G,” J. Phys. D 27, 2019–2022 (1994).
[CrossRef]

J. Phys. Ref. Data (1)

I. Carmichael, G. L. Hug, “Triplet-triplet absorption spectra of organic molecules in condensed phases,” J. Phys. Ref. Data 15, 1–250 (1986).
[CrossRef]

Other (7)

W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1996).
[CrossRef]

V. M. Baev, “Höchstempfindliche Spektroskopie mit Vielmoden-Lasern,” Habilitation-Thesis (University of Hamburg, Hamburg, Germany, 1993).

T. D. Harris, “Laser intracavity-enhanced spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Klinger, ed. (Academic, New York, 1983).

J. Pfab, “Laser-induced fluorescence spectroscopy,” in Applied Laser Spectroscopy, D. L. Andrews, ed. (VCH, New York, 1992), pp. 111–184.

R. Riegler, J. Widengren, Ü. Mets, “Interactions and kinetics of single molecules as observed by fluorescence correlation spectroscopy,” in Fluorescence Spectroscopy: New Methods and Applications, O. S. Wolfbeis, ed. (Springer-Verlag, Berlin, 1992), pp. 13–24.

V. Brückner, K.-H. Feller, U.-W. Grummt, Applications of Time-Resolved Optical Spectroscopy (Elsevier, Amsterdam, 1990).

E. Thiel, Eigenschaften angeregter Rhodaminfarbstoffe und deren Wirkung im Farbstofflaser (Shaker-Verlag, Aachen, Germany, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for recording time-resolved spectra of transient absorption: el, ion laser (cw excitation light); pc, Pockels cell (ω E ); m’s, plane mirrors; al, achromatic lens (f = 50 mm); bs, beam splitter; s, sample; pl, Xe-arc lamp (probe light); uva, achromatic UV lens; a1, aperture (d = 20 µm); a2, aperture (d = 2 cm); ch, chopper (ω P ); cm1, cm2, concave mirrors; mc, monochromator; pd, photodiode.

Fig. 2
Fig. 2

Irradiation of the sample (to scale): Δx, distance of the centers of the foci of excitation and probe beams; ϕ, diameter (e -1) of the probe and the excitation beams; v jet, velocity of the sample in the x direction; d, thickness of the sample.

Fig. 3
Fig. 3

Signal of Rhodamine 6G in ethylene glycol, recorded as function of the distance of the foci of the excitation and probe beams and of the wavelength. Wavelength of excitation, λ E = 514 nm; excitation power, P E = 80 mW; absorbance of the sample, λ E = 0.5.

Fig. 4
Fig. 4

Sections of Fig. 3 along the Δx axis at two selected wavelengths.

Fig. 5
Fig. 5

(a) Section of Fig. 3 along the wavelength axis at Δx = 0 µm. (b) Section of Fig. 3 along the wavelength axis at Δx = 25 µm. (c) Spectrum of the ground-state absorption (Perkin-Elmer, Lambda 19) and photon spectrum of the fluorescence (normalized and corrected; Spex Industries, Inc., Fluorolog 2) of the sample.

Fig. 6
Fig. 6

(a) Signal of Rhodamine 6G in ethylene glycol at λ P = 535 nm recorded as a function of time Δt between excitation and detection. The solution is in equilibrium with ambient air. Solid line, a monoexponential fit to the data in the range Δt = 2–9 µs. (b) Signal of Rhodamine 6G in ethylene glycol at λ P = 535 nm as a function of time Δt between excitation and detection. The solution is nearly saturated with molecular oxygen. Solid line, a monoexponential fit to the data in the range Δt = 0.8–3 µs. Wavelength of excitation, λ E = 514 nm; excitation power, P E = 80 mW; absorbance of the sample, λ E = 0.5.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P=TDPPTP+κ1PE+κ2PE+κ3PP+κ4PEPP,
P=TDPEPPκ4+κ6+PPκ3+κ5+PEκ1+κ2.
PP=½ PP01+cosωPt, PE=½ PE01+cosωEt+δ,
P=TD½ PP0κ3+κ5+½ PE0κ1+κ2+¼ PE0PP0κ4+κ6+¼ PP0PE0κ4+κ6+2κ3+κ5cosωPt+¼ PE0PP0κ4+κ6+2κ1+κ2cosωEt+δ+ PE0PP0κ4+κ6cosωSt+δ+ PE0PP0κ4+κ6cosωDt-δ.
ΔP=TD1π18 PE0PP0κ4+κ6,
PT=TD1π12 κ5PP01+κ3κ5+PE02κ4+κ6κ5.
PT=TD1π12 κ5PP0.
Sr, λ=ΔPPT=14 PE0κ4+κ6κ5.
ΔS=ΔΔPSΔP2+ΔPTSPT201/2ΔΔPPT.
ΔΔP  1PP0κ5.
ΔSS=ΔΔPΔP  1S1PP0κ52.
dx/dt=vjet.

Metrics