Abstract

The experimental study of an optical isolator by use of a nonreciprocal phase shift is demonstrated. The isolator has an optical interferometer composed of tapered couplers, nonreciprocal phase shifters, and a reciprocal phase shifter. The isolator, designed for a 1.55-µm wavelength, was fabricated to investigate the characteristics of each component. The branching and coupling characteristics of the tapered coupler were measured. The nonreciprocal and reciprocal phase shifts were also evaluated. By applying an external magnetic field to the interferometer, we confirmed the nonreciprocal phase shift in the interferometric isolator.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Castera, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton–Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
    [CrossRef]
  2. T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
    [CrossRef]
  3. T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory and Tech. MTT-30, 922–925 (1982).
    [CrossRef]
  4. T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Tech. LT-4, 347–352 (1986).
    [CrossRef]
  5. Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Tech. LT-4, 711–714 (1986).
    [CrossRef]
  6. Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Tech. 8, 1621–1629 (1990).
    [CrossRef]
  7. M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
    [CrossRef]
  8. T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
    [CrossRef]
  9. H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
    [CrossRef]
  10. H. Yokoi, T. Mizumoto, Y. Naito, “Coupling characteristics of a three-guide tapered coupler,” in Technical Digest of the First Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1996), pp. 560–561.

1994 (2)

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

1993 (1)

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

1990 (1)

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Tech. 8, 1621–1629 (1990).
[CrossRef]

1988 (1)

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

1986 (2)

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Tech. LT-4, 347–352 (1986).
[CrossRef]

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Tech. LT-4, 711–714 (1986).
[CrossRef]

1982 (1)

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory and Tech. MTT-30, 922–925 (1982).
[CrossRef]

1977 (1)

J. P. Castera, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton–Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
[CrossRef]

Abe, M.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Cai, Y.

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Tech. 8, 1621–1629 (1990).
[CrossRef]

Castera, J. P.

J. P. Castera, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton–Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
[CrossRef]

Gomi, M.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Harada, T.

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Tech. LT-4, 347–352 (1986).
[CrossRef]

Hepner, G.

J. P. Castera, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton–Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
[CrossRef]

Ida, T.

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Inuzuka, H.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Tech. LT-4, 711–714 (1986).
[CrossRef]

Kikuchi, T.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Tech. LT-4, 711–714 (1986).
[CrossRef]

Kozakai, K.

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

Mashimo, S.

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Mizumoto, T.

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Tech. 8, 1621–1629 (1990).
[CrossRef]

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Tech. LT-4, 347–352 (1986).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory and Tech. MTT-30, 922–925 (1982).
[CrossRef]

H. Yokoi, T. Mizumoto, Y. Naito, “Coupling characteristics of a three-guide tapered coupler,” in Technical Digest of the First Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1996), pp. 560–561.

Naito, Y.

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Tech. 8, 1621–1629 (1990).
[CrossRef]

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Tech. LT-4, 347–352 (1986).
[CrossRef]

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory and Tech. MTT-30, 922–925 (1982).
[CrossRef]

H. Yokoi, T. Mizumoto, Y. Naito, “Coupling characteristics of a three-guide tapered coupler,” in Technical Digest of the First Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1996), pp. 560–561.

Okamura, Y.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Tech. LT-4, 711–714 (1986).
[CrossRef]

Oochi, K.

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Tech. LT-4, 347–352 (1986).
[CrossRef]

Satoh, S.

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

Shintaku, T.

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

Uno, T.

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

Yamamoto, S.

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Tech. LT-4, 711–714 (1986).
[CrossRef]

Yokoi, H.

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

H. Yokoi, T. Mizumoto, Y. Naito, “Coupling characteristics of a three-guide tapered coupler,” in Technical Digest of the First Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1996), pp. 560–561.

IEEE Trans. Magn. (2)

J. P. Castera, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton–Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977).
[CrossRef]

T. Mizumoto, S. Mashimo, T. Ida, Y. Naito, “In-plane magnetized rare earth iron garnet for a waveguide optical isolator employing nonreciprocal phase shift,” IEEE Trans. Magn. 29, 3417–3419 (1993).
[CrossRef]

IEEE Trans. Microwave Theory and Tech. (1)

T. Mizumoto, Y. Naito, “Nonreciprocal propagation characteristics of YIG thin film,” IEEE Trans. Microwave Theory and Tech. MTT-30, 922–925 (1982).
[CrossRef]

J. Appl. Phys. (1)

T. Shintaku, T. Uno, “Optical waveguide isolator based on nonreciprocal radiation,” J. Appl. Phys. 76, 8155–8159 (1994).
[CrossRef]

J. Lightwave Tech. (3)

T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Ga5O12 film and application to waveguide-type optical circulator,” J. Lightwave Tech. LT-4, 347–352 (1986).
[CrossRef]

Y. Okamura, H. Inuzuka, T. Kikuchi, S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Tech. LT-4, 711–714 (1986).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, “Analysis of the coupling characteristics of a tapered three-guide coupled system,” J. Lightwave Tech. 8, 1621–1629 (1990).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Gomi, S. Satoh, M. Abe, “Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering,” Jpn. J. Appl. Phys. 27, L1536–L1538 (1988).
[CrossRef]

H. Yokoi, T. Mizumoto, T. Ida, K. Kozakai, Y. Naito, “Loss increase of (LuNdBi)3(FeAl)5O12 films caused by sputter etching,” Jpn. J. Appl. Phys. 33, 6355–6359 (1994).
[CrossRef]

Other (1)

H. Yokoi, T. Mizumoto, Y. Naito, “Coupling characteristics of a three-guide tapered coupler,” in Technical Digest of the First Optoelectronics and Communications Conference (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1996), pp. 560–561.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical isolator that uses a nonreciprocal phase shift. An external magnetic field is applied in an antiparallel direction to achieve a push–pull nonreciprocal phase shift.

Fig. 2
Fig. 2

Schematic diagram of a three-waveguide tapered coupler. The width of the central waveguide varies linearly along the propagation direction. The waveguide parameters are in micrometers.

Fig. 3
Fig. 3

Calculated nonreciprocal phase shift and required propagation distance of the waveguide with a SiO2/LNB/GGG structure at 1.55-µm wavelength.

Fig. 4
Fig. 4

Normalized output power from central and side waveguides of the tapered coupler depending on propagation distance.

Fig. 5
Fig. 5

Experimental setup for measuring coupling characteristics of the three-waveguide tapered coupler. The phase difference between two incident waves varies because of the refractive-index change in one branch of the beam splitter.

Fig. 6
Fig. 6

Branching ratio of the three-waveguide tapered coupler for wavelengths that range between 1.50 and 1.58 µm.

Fig. 7
Fig. 7

Coupling characteristics of the three-waveguide tapered coupler at 1.55-µm wavelength. We varied the output sinusoidally by changing the phase difference between the two incident waves.

Fig. 8
Fig. 8

Optical output power from the central waveguide of the tapered coupler.

Fig. 9
Fig. 9

(a) Near-field pattern observed at the output facet of the optical isolator without an external magnetic field and (b) illustrated near-field pattern.

Fig. 10
Fig. 10

(a) Near-field pattern observed at the output facet of the optical isolator with an external magnetic field and (b) illustrated near-field pattern. The output from the central waveguide is obvious.

Metrics