Abstract

A theoretical analysis and an experimental study are presented on the phase-matching condition of noncollinearly pumped optical parametric oscillators (OPO’s) based on a noncritical phase-matching potassium titanyl phosphate (KTP) OPO. It is shown that noncollinearly pumped, double-pass, singly resonant optical parametric oscillators maintain the advantage of round-trip parametric gain in a collinear pump, since in this case the two generated signal waves are coherent, which results in high conversion efficiency and low pump threshold. With this KTP OPO we achieved 31% energy conversion efficiency from a 1064-nm pump wave to 1572-nm eye-safe output. In addition, because the incident pump beam is not perpendicular to the OPO cavity mirrors and consequently no reflected beam flows back into the pump source, we can avoid employing optical isolators.

© 1999 Optical Society of America

Full Article  |  PDF Article
Related Articles
Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition

S. T. Yang, R. C. Eckardt, and R. L. Byer
J. Opt. Soc. Am. B 10(9) 1684-1695 (1993)

Efficient ultraviolet LiB3O5 optical parametric oscillator

Majid Ebrahimzadeh, Gordon Robertson, and Malcolm H. Dunn
Opt. Lett. 16(10) 767-769 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription